Visão Geral
Nosso curso de treinamento R lhe dará uma base sólida na criação de soluções de análise estatística usando a linguagem R (Rlang) e como realizar uma variedade de processos analíticos comumente usados. Você também aprenderá a produzir gráficos de qualidade para acompanhar sua pesquisa analítica.
R é uma linguagem de programação projetada expressamente para fornecer um ambiente de programação estatística que inclui recursos gráficos extensivos. Tornou-se rapidamente o padrão de fato para analistas em muitas disciplinas.
Se você é novo em programação, mas tem uma mente analítica e uma cabeça para estatísticas, nós o ajudamos a aprender rapidamente os fundamentos das soluções de codificação manual usando o R Studio.
Ficaríamos felizes em discutir como podemos personalizar um workshop sobre Rlang que leve em consideração os requisitos de seu negócio e os objetivos de aprendizado da equipe - dê uma olhada na guia do programa abaixo para ver algumas das opções de modularização que podemos oferecer.
O curso de análise estatística R também pode ser uma parte fundamental de programas mais amplos de treinamento em Ciência de Dados, que também incluem assuntos retirados de nossos programas de Python, Scala e Apache Spark. Gostaríamos muito de ouvir de você se você tiver alguma dúvida.
Conteúdo Programatico
Introduction to R
- Overview of the R environment
- Getting help
- Simple maths
Data in R
- Loading and saving data
- Types of R object
- Making R data objects
- Cross tabulation
- Working with data objects
Statistical analyses using R
- Describing data
- Data distribution and sampling
- Basic hypothesis testing
- Advanced analyses – ANOVA and regression
Using R for graphical summary
- Producing graphs using R
- Customising graphs
- Adding lines, points, symbols and text to graphs
- Working with colour
- Exporting graphs
Custom solutions using R
- Custom functions
- Writing and saving scripts
- Object classes
- Loops and conditional statements
- Making the most of results
- Developing custom R solutions
- The following modules are suggestions for custom training programmes, which can be tailored to your team's requirements.
IT Solutionss R Course modules
- You can split the R course into modules that can be taken ad hoc but with a coherent syllabus - each of the following modules can be arranged to be delivered in a day - or split over half days to fit in with your team's needs.
- Foundation: introduction to data and graphics.
- Statistical Hypothesis Testing: basic stats tests.
- Advanced Graphics: professional quality graphics.
- Unsupervised Machine Learning: cluster analysis.
- Supervised Machine Learning: regression analysis.
- Visual data exploration: advanced graphical methods for exploring data.
- R Programming Tools: unlock the potential of R.
- Using the Tidyverse: tools for data scientists.
- RMarkdown: integrate R results and graphics into documents.
F01 BEGINNING R (FOUNDATION)
- Suitable for complete beginners. A one-day foundation to using R: the statistical programming language. You’ll gain various skills, including:
- Importing Data.
- Handling Data.
- Data Summary and Aggregation.
- Visualising Data.
- No previous experience of statistics, graphics or computer languages is needed.
F02 STATISTICAL HYPOTHESIS TESTING WITH R
- An introduction to the basics of hypothesis testing using R. This one-day module assumes some knowledge of R but experience of statistical analysis is not necessary.
- Data distribution.
- Tests for differences in samples.
- Tests for correlation.
- Tests of association.
- Analysis of Variance.
- Introduction to regression.
- Visualising and reporting results.
F03 ADVANCED GRAPHICS
- This one-day module builds on the foundation and extends your skills in graphical presentation. The module focusses on the skills you need to create professional quality graphics, such as:
- Adding text to plots.
- Legends.
- Adding lines and curves to plots.
- Special characters, e.g. superscript, maths symbols.
- Using colour.
- Exporting graphics.
- Some knowledge of the graphical functions of R is required, our foundation module would be ideal preparation.
F04 UNSUPERVISED MACHINE LEARNING
- Unsupervised machine learning is a collective term for methods of data analysis that seek to find and identify clusters in your data. This one-day module will give you the skills you need to carry out a range of analytical methods including:
- Similarity & dissimilarity.
- Hierarchical cluster analysis.
- K-means analysis.
- Multivariate analysis (ordination).
- Some prior knowledge of R is required but you don’t need any experience of cluster analysis or statistics.
F05 SUPERVISED MACHINE LEARNING
- Supervised machine learning is a general term for methods of predictive data analysis. The most commonly used method of machine learning is regression. In this one-day module you’ll learn a range of regression modelling skills including:
- Regression model building.
- Curvilinear regression.
- Best-fit lines.
- Confidence Intervals.
- Model building.
- Generalised linear modelling (GLM) for non-Gaussian data.
- Some prior knowledge of R is required but no especial knowledge or experience of statistics or regression are necessary.
F06 VISUAL DATA EXPLORATION
- This module focusses on graphical methods of data exploration and covers some advanced graphical techniques.
- Graphs of data distribution.
- Graphs highlighting sample differences.
- Graphs highlighting relationships.
- Graphs of compositional data.
- Multivariate plots.
- Some previous knowledge of R is assumed; our foundation module would be ideal preparation.
F07 R PROGRAMMING TOOLS
- This module explores the flexibility of R by exploring the programming tools that allow you to create your own custom routines.
- R Scripts.
- Function parameters.
- Function results.
- User Intervention.
- Conditional expressions.
- Error Trapping.
- Argument matching.
- Loops.
- Custom class results.
- Some previous experience of using R is needed for this module, our foundation module would be ideal preparation.
F08 USING THE TIDYVERSE
- The Tidyverse is a popular suite of R packages designed to help the data scientist. This module provides an introduction and overview to the tools available in the Tidyverse including:
- Importing data with readr.
- Cleaning data with tidyr.
- Manipulating data with dplyr.
- Graphics with ggplot2.
- Some previous experience of using R is essential, our foundation module would be ideal preparation.
F09 RMARKDOWN
- Markdown is a popular way to encode text and graphics into HTML, PDF and other document formats. RMarkdown integrates the power and flexibility of R with Markdown. This allows you to carry out data analytics using R and integrate the results into reports and documents. This module covers a range of topics, including:
- Markdown syntax.
- Integrating R.
- HTML documents.
- Word documents.
- PDF documents.
- Slide presentations.
- Some knowledge of using R is essential here, although you don’t need to be an advanced user to use RMarkdown. No previous experience of HTML or “regular” markdown is required.