Visão Geral
O Machine Learning é um fenômeno global, é a aplicação de sistemas artificiais que dão a capacidade de aprender e melhorar automaticamente a experiência sem a necessidade de programar aspectos explicitamente.
O Python considerado o idioma preferido para o Aprendizado de Máquina é usado extensivamente neste curso para abranger vários conceitos e conduzir os participantes pelas profundezas e vários casos de uso do Aprendizado de Máquina.
Objetivo
No final deste programa de treinamento, os participantes terão uma compreensão profunda das
- Python para aprendizado de máquina
- Vários conceitos e algoritmos de Machine Learning
- Trabalhando com dados para aprendizado de máquina
Pre-Requisitos
- É bom ter um conhecimento básico da programação em Python.
Materiais
Inglês
Conteúdo Programatico
INTRODUCTION TO MACHINE LEARNING
- Introduction to Artificial Intelligence & Machine Learning
- Who uses AI?
- Supervised & Unsupervised Learning
- Regression & Classification Problems
- What makes a Machine Learning Expert?
- What to learn to become a Machine Learning Developer?
- Overview of Machine Learning Algorithms
INTRODUCTION TO PYTHON
- Basic syntax
- Data structures in Python
- Functions
DATA STRUCTURE & DATA MANIPULATION
- Indexing, Data Processing using Numpy Arrays and Pandas
- Mathematical computing basics
- Basic statistics
- File Input and Output
- Getting Started with Dataframes
- Data Acquisition (Import & Export)
- Selection and Filtering
- Combining and Merging Data Frames
- Removing Duplicates & String Manipulation
LINEAR REGRESSION – CASE STUDY & PROJECT
- Regression Problem Analysis
- Mathematical modelling of Regression Model
- Gradient Descent Algorithm
- Use cases
- Model Specification
- L1 & L2 Regularization
- Building simple Univariate Linear Regression Model
- Multivariate Regression Model
KNN
- KNN Theory
- KNN with Python
- KNN Exercise with real data
DECISION TREESGG
- Forming a Decision Tree
- Components of Decision Tree
- Mathematics of Decision Tree
- Decision Tree Evaluation for use cases
RANDOM FORESTS
- Random Forest Mathematics
- Examples & use cases using Random Forests
BAGGING AND BOOSTING
- Bias Variance Tradeoffs
- Bagging
- Boosting
- Bootstrapping
- Ensemble models with real world data
SUPPORT VECTOR MACHINE
- Concept and Working Principle
- Mathematical Modelling
- Optimization Function Formation
- The Kernel Method and Nonlinear Hyperplanes
- Use Cases & Programming SVM using Python
LOGISTIC REGRESSION
- Assumptions
- Reason for the Logit Transform
- Logit Transformation
- Hypothesis
- Variable and Model Significance
- Maximum Likelihood Concept
- Log Odds and Interpretation
CLUSTERING
- Hierarchical Clustering
- K Means Clustering
- Use Cases for K Means Clustering
- Programming for K Means using Python
- Cluster Size Optimization vs Definition Optimization
TENHO INTERESSE