Curso Python Programming for Scientists
32 horasVisão Geral
O Curso Python Programming for Scientists, ensina cientistas, matemáticos, estatísticos e engenheiros a usar Python para computação científica e matemática. Os participantes aprendem o básico, bem como os módulos Python mais importantes para trabalhar com dados, desde matrizes a estatísticas e plotagem de resultados. O material é voltado para cientistas e engenheiros.
Objetivo
Após realizar este Curso Python Programming for Scientists você será capaz de:
- Crie e execute programas básicos
- Projetar e codificar módulos e classes
- Implementar e executar testes unitários
- Use benchmarks e perfis para acelerar programas
- Processar XML e JSON
- Manipule matrizes com NumPy
- Entenda a diversidade de subpacotes que compõem o SciPy
- Use notebooks Jupyter para cálculos ad hoc, gráficos e hipóteses?
Pre-Requisitos
- Embora não haja pré-requisitos de programação, a experiência em programação é útil. Os alunos devem ter uma sólida formação matemática e sentir-se confortáveis ao trabalhar com arquivos e pastas, além de estar familiarizados com a linha de comando no Linux, Windows ou Mac OS.
Materiais
Inglês/Português/Lab PráticoConteúdo Programatico
The Python Environment
- About Python
- Starting Python
- Using the interpreter
- Running a Python script
- Python scripts on Unix/Windows
- Using the Spyder editor
Getting Started
- Using variables
- Builtin functions
- Strings
- Numbers
- Converting among types
- Writing to the screen
- String formatting
- Command line parameters
Flow Control
- About flow control
- White space
- Conditional expressions (if,else)
- Relational and Boolean operators
- While loops
- Alternate loop exits
Sequences
- About sequences
- Lists and tuples
- Indexing and slicing
- Iterating through a sequence
- Sequence functions, keywords, and operators
- List comprehensions
- Generator expressions
- Nested sequences
Working with Files
- File overview
- Opening a text file
- Reading a text file
- Writing to a text file
- Raw (binary) data
Dictionaries and Sets
- Creating dictionaries
- Iterating through a dictionary
- Creating sets
- Working with sets
Functions
- Defining functions
- Parameters
- Variable scope
- Returning values
- Lambda functions
Errors and Exception Handling
- Syntax errors
- Exceptions
- Using try/catch/else/finally
- Handling multiple exceptions
- Ignoring exceptions
OS Services
- The os module
- Environment variables
- Launching external commands
- Walking directory trees
- Paths, directories, and filenames
- Working with file systems
- Dates and times
Modules and Packages
- Initialization code
- Namespaces
- Executing modules as scripts
- Documentation
- Packages and name resolution
- Naming conventions
- Using imports
Classes
- Defining classes
- Constructors
- Instance methods and data
- Attributes
- Inheritance
- Multiple inheritance
Programmer Tools
- Analyzing programs with pylint
- Creating and running unit tests
- Debugging applications
- Benchmarking code
- Profiling applications
Excel Spreadsheets
- The openpyxl module
- Reading an existing spreadsheet
- Creating a spreadsheet from scratch
- Modifying an existing spreadsheet
Serializing Data
- Creating XML Files
- Parsing XML
- Finding by tags and XPath
- Reading JSON files
- Writing JSON
iPython and Jupyter
- About iPython and Jupyter
- iPython basics
- Magic commands
- About Jupyter
- Documentation cells
NumPy
- NumPy basics
- Creating arrays
- Indexing and slicing
- Large number sets
- Transforming data
- Advanced tricks
Pandas
- Pandas overview
- Series and Dataframes
- Reading and writing data
- Advanced indexing and slicing
- Merging and joining data sets
SciPy
- What is SciPy
- What you do with SciPy?
- Tour of SciPy packages
- Simple SciPy examples
Matplotlib
- Creating a basic plot
- Commonly used plots
- Customizing styles
- Ad hoc data visualization
- Advanced usage
- Saving images