Curso Python Programming Advanced

  • Data Science Analytic

Curso Python Programming Advanced

32 horas
Visão Geral

O Curso Python Programming Advanced, que seria a continuação do Curso Introduction to Python Programming, de onde parou a Introdução à Programação Python, cobrindo alguns tópicos com mais detalhes e adicionando novos. Por exemplo, as aulas são abordadas com mais detalhes, com nova cobertura de serviços de sistema operacional, gerenciamento de data/hora, dados binários, testes unitários, conectividade de banco de dados, programação de rede e muito mais.

Objetivo

Após realizar este Curso Python Programming Advanced você será capaz de:

  • Aproveite os serviços do sistema operacional
  • Adicione melhorias às aulas
  • Codifique interfaces gráficas para aplicativos
  • Entenda conceitos avançados de metaprogramação em Python
  • Crie módulos e pacotes fáceis de usar e manter
  • Implementar e executar testes unitários
  • Crie aplicativos multithread e multiprocessos
  • Interaja com serviços de rede
  • Crie roteiros profissionais
  • Consultar bancos de dados
Pre-Requisitos
  • Todos os alunos devem ser capazes de escrever scripts Python simples usando tipos de dados básicos, estruturas de programas e a biblioteca Python padrão.
  • ou ter concluido o Curso Introduction to Python Programming
Materiais
Inglês/Português/Lab Prático
Conteúdo Programatico

Introduction

Python Refresher

  1. Built-in data types
  2. Lists and tuples
  3. Dictionaries and sets
  4. Program structure
  5. Files and console I/O
  6. If statement
  7. for
  8. Built-in functions
  9. User-defined functions
  10. Modules and packages
  11. Basic OOP

OS Services

  1. The os and os.path modules
  2. Environment variables
  3. Launching external commands with subprocess
  4. Walking directory trees
  5. Paths, directories, and filenames
  6. Working with file systems

Dates and Times

  1. Basic date and time classes
  2. Different time formats
  3. Converting between formats
  4. Formatting dates and times
  5. Parsing date/time information

Binary Data

  1. What is Binary Data?
  2. Binary vs text
  3. Using the Struct module

Pythonic Programming

  1. The Zen of Python
  2. Tuples
  3. Advanced unpacking
  4. Sorting
  5. Lambda functions
  6. List comprehensions
  7. Generator expressions
  8. String formatting

Functions, Modules, and Packages

  1. Four types of function parameters
  2. Four levels of name scoping
  3. Single/multi-dispatch
  4. Relative imports
  5. Using __init__ effectively
  6. Documentation best practices

Enhancing Classes

  1. Class/static data and methods
  2. Inheritance (or composition)
  3. Abstract base classes
  4. Creating attributes with attr
  5. Implementing protocols (context, iterator, etc.)

Metaprogramming

  1. Implicit properties
  2. globals() and locals()
  3. Working with object attributes
  4. The inspect module
  5. Callable classes
  6. Decorators
  7. Monkey patching

Developer Tools

  1. Analyzing programs with pylint
  2. Using the debugger
  3. Profiling code
  4. Testing speed with benchmarking

Unit Testing with PyTest

  1. What is a unit test
  2. Creating test cases
  3. Writing and running tests
  4. Test harnesses
  5. Working with fixtures

Database Access

  1. The DB API
  2. Available Interfaces
  3. Connecting to a server
  4. Creating and executing a cursor
  5. Fetching data
  6. Parameterized statements
  7. Using Metadata
  8. Transaction control
  9. ORMs and NoSQL overview

PyQt

  1. Overview
  2. Qt Architecture
  3. Using designer
  4. Standard widgets
  5. Event handling
  6. Extras

Network Programming

  1. Built-in classes
  2. Using requests
  3. Grabbing web pages
  4. Sending email
  5. Working with binary data
  6. Consuming RESTful services
  7. Remote access (SSH)

Multiprogramming

  1. The threading module
  2. Sharing variables
  3. The queue module
  4. The multiprocessing module
  5. Creating pools
  6. About async programming

Scripting for System Administration

  1. Running external programs
  2. Parsing arguments
  3. Creating filters to read text files
  4. Logging

Serializing Data

  1. Working with XML
  2. XML modules in Python
  3. Getting started with ElementTree
  4. Parsing XML
  5. Updating an XML tree
  6. Creating a new document
  7. About JSON
  8. Reading JSON
  9. Writing JSON
  10. Reading/writing CSV files
  11. YAML, other formats as time permits

Advanced Data Handling [as time permits]

  1. Discover the collections module
  2. Use defaultdict, Counter, and namedtuple
  3. Create dataclasses
  4. Store data offline with pickle

Type Hinting [as time permits]

  1. Annotate variables
  2. Learn what type hinting does NOT do
  3. Use the typing module for detailed type hints
  4. Understand
  5. Write stub interfaces
TENHO INTERESSE

Cursos Relacionados

Curso Fundamentos de Gerenciamento de Dados Mestres

16 horas

Curso Big Data Analyst Mineração de Dados

32 horas

Curso Técnicas de integração de dados ETL

16 horas

Curso Big Data Boot Camp Visão de Negócios

Curso Inteligência Artificial / AI Visão Geral

8 horas

Curso Oracle Fundamentos de Big Data

32 horas

Curso Fundamentos de Qualidade de Dados

16 horas

Curso Marchine Learning Com Hadoop

32 horas

Curso Python for Data Analysis

24 horas