Visão Geral
O Curso Developer R Advanced, ensina aos alunos habilidades mais sofisticadas de R, incluindo o uso de expressões regulares avançadas, aprendizado de máquina, modelagem de efeitos aleatórios, Inferência Bayesiana, séries temporais R avançadas e muito mais.
Conteúdo Programatico
Advanced Regular Expressions in R
- Using Perl-Style Regular Expressions in R
Machine Learning Approaches in R
- Pre-processing Data
- Feature Selection
- Supervised Learning:
- Classification Models
- Regression Models
- Unsupervised Learning:
- Clustering
Advanced Missing Data Techniques
- Understanding the different types of Missing Data
- Implications for Analysis
- The AMELIA package
- Multiple Imputation
Advanced R Time Series
- The ts class
- The zoo package
- The xts class
- Lubridate for advanced date handling
- Autocorrelation Plots
- Seasonal, trend, and noise plots
- Financial Charting with R
Using data.table for Big Data
- Why do we need data.table?
- Why is it
- The i and the j arguments in data.table
- Merging data with data.table
- Group-by functions with data.table
- Using data.table in functions
Generalized Linear Models
- Logistic Regression
- Poisson Regression
- Gamma Regression
Extend R to Time to Event or Survival Analyses
- Visualizing Hazards Across Time
- Understanding the Log Rank Test
- Cox Proportional Hazards Modeling
- Understand Time Varying Covariates
- Understand Time Dependent Covariates
- Understanding the Hazard Ratio
- Implement Frailty Models for Clustered Data
- Parametric Survival Models
- Weibull Model
- Exponential Model
- Predicting Failure Times
Random Effects Modeling in Linear Regression
- Random effects introduction
- Covariance structures
- Interpreting random effects in models
- Longitudinal Data
- Clustered Data
- Prediction in Random Effects
Extension: Random Effects Modeling in Logistic Regression
- Random effects introduction
- Covariance structures
- Interpreting random effects in models
- Marginal versus Conditional Models
- Stratified Logistic regression
- GEE Models in Logistic Regression
Bayesian Inference Using R
- Linear model
- Logistic Model
- Random Effects / Fixed effects model