Curso Containerization Fast Track

  • Data Science Analytic

Curso Containerization Fast Track

32 horas
Visão Geral

Este Curso Containerization Fast Track foi desenvolvido para fornecer aos alunos o conhecimento necessário para usar uma imagem de base do Docker fornecida e recursos iniciais do Kubernetes para criar, armazenar e implantar aplicativos. 

O Curso Containerization Fast Track começa com uma revisão dos conceitos e metodologias que impulsionam a adoção de aplicativos e microsserviços em contêiner. Em seguida, os alunos usarão o Docker e o Linux para entender como as imagens são criadas, funcionam e como garantir que um aplicativo/contêiner seja pequeno, seguro, robusto e autorrecuperável. O Curso Containerization Fast Track termina com a exploração de tópicos mais avançados - incluindo o objetivo e um mergulho profundo no Kubernetes.

Aprenda as habilidades necessárias para criar, armazenar e implantar contêineres usando Docker e Kubernetes.

Objetivo

Após Realizar Este Curso Containerization Fast Track você Será Capaz de:

  • Evaluate the challenges of building and running distributed applications and different approaches; Monolithic vs Microservice
  • Apply best practices for secure, resilient, and self-healing Docker containers that are ready for production
  • Explain the Docker core components and architecture and how it integrates with Kubernetes
  • Apply Kubernetes system architecture and declarative approach to services, applications, storage, and networking
  • Deploy an application on Kubernetes in a local development environment, and in the cloud (AWS)
Publico Alvo

Desenvolvedores e administradores de sistemas com graus variados de exposição a conceitos como infraestrutura como código e microsserviços que buscam expandir sua compreensão da conteinerização.

Materiais
Português/Inglês + Exercícios + Lab Pratico
Conteúdo Programatico

Demystifying and Defining Distributed Systems, Cloud Native, and Infrastructure as Code 

  1. What are microservices? What is a Monolith?
  2. Why does the cloud favor stateless applications for predictable and easy scaling?
  3. Modern approaches to application development and design principles
  4. What does it mean for a technology to be “cloud-native”?
  5. Infrastructure as code and the difference between provisioning and configuration management
  6. Thriving DevOps models using code reviews

Introduction to Containerization, Docker, and Linux 

  • What is a container and how is it different from a virtual machine?
  • Container ecosystem
  • Setup and manage a Docker development environment
  • The Dockerfile and best practices for building Docker image
  • Layers to form an image and efficient artifact storage using Docker
  • Tools and techniques for troubleshooting and fixing common issues
  • Linux concepts, how a running container interacts with the system, and how to inspect information about your environment.

Diving Deeper into Docker and Containers 

  1. Beginner to advanced Docker image construction (consume, extend, custom design)
  2. Workflows for developing applications locally using Docker, including dependant applications such as databases
  3. Creating efficient, small images – Alpine Linux, Ubuntu 18.04, Debian slim, and other distributions.
  4. CI pipeline for building, testing and pushing Docker images to a registry
  5. Testing your images using scanning, security tools as a part of your CI pipeline
  6. Code challenge: Design a Dockerfile for a simple Python web application
  7. Use-cases behind volumes and managing state inside containers.
  8. Consequences of running as root inside a container and how to mitigate
  9. Docker Compose as a tool for development
  10. Docker and Kubernetes application bootstrapping tool and the resources it creates as a base for a new Node.js application
  11. Open Container Initiative, competing container runtimes, and advanced Docker concepts such as multi-stage builds

Introduction to Kubernetes and Container Orchestration 

  1. Kubernetes overview and design principles
  2. What is an orchestrator? What is a scheduler? Why are they needed?
  3. Kubernetes systems architecture and core components
  4. What is a Kubernetes resource/manifest? How Kubernetes manages the application state.
  5. Challenges of managing distributed applications and how Kubernetes tries to address these challenges, e.g. modern DNS, service discovery through the Kube-proxy, and dynamic container networking configuration
  6. Kubernetes Pods, probes, configuration and design patterns for multi-container pods
  7. How can ConfigMaps be used instead of standard environment variables in the Pod definition for providing runtime configuration?
  8. How Secrets provides access to sensitive information for Pods

Diving Deeper into Kubernetes 

  1. Kubernetes services, service types and internal (cluster) vs. external access considerations
  2. Deploying and scaling Pods using the Deployment resource
  3. Options for routing external traffic
  4. The Ingress Controller and more full-featured alternatives (Envoy, Istio, Traefik, etc)
  5. Deployment strategies and how to achieve either rolling or blue/green deployments
  6. Creating canary pods for testing and verification in production.
  7. Alternate pod deployments with Jobs, Cron Jobs and DaemonSets
TENHO INTERESSE

Cursos Relacionados

Curso Fundamentos de Gerenciamento de Dados Mestres

16 horas

Curso Big Data Analyst Mineração de Dados

32 horas

Curso Técnicas de integração de dados ETL

16 horas

Curso Big Data Boot Camp Visão de Negócios

Curso Inteligência Artificial / AI Visão Geral

8 horas

Curso Oracle Fundamentos de Big Data

32 horas

Curso Fundamentos de Qualidade de Dados

16 horas

Curso Marchine Learning Com Hadoop

32 horas

Curso Python for Data Analysis

24 horas