Visão Geral
Formação Machine Learning, O Machine Learning se concentra na criação de algoritmos para encontrar padrões ou fazer previsões a partir de dados experimentais. O crescente campo de aprendizado de máquina tem uma vasta gama de aplicações em diferentes áreas, como sistemas inteligentes, visão computacional, reconhecimento de fala, processamento de linguagem natural, robótica, finanças, recuperação de informações, saúde, previsão do tempo. O programa de Mestrado em Machine Learning desenvolve fundamentos teóricos e práticos necessários para estar na frente do progresso na próxima revolução técnica. Os aprimoramentos concluídos no Machine Learning e suas disciplinas relacionadas em breve rastrearão todas as partes da tecnologia.
Esta formação permite que você se torne especialista em várias abordagens de Machine Learning, como aprendizado supervisionado, aprendizado não supervisionado e processamento de linguagem natural. O programa de mestrado inclui treinamento sobre os recentes desenvolvimentos e métodos técnicos em Inteligência Artificial
Conteúdo Programatico
Unit
1: Essential Mathematics - 20 hours
- Include Linear Algebra which refers to familiarity
with integrals, differentiation, differential equations, etc.
- Statistics including Inferential Statics,
Descriptive Statistics, Chi-Squared Tests, Random Variable, Gaussian and
Normal Distributions, etc.
- Probability like Bayes Theorem, Optimization like
Convex Optimization, etc.
Unit
2: Introduction to Python - 20 hours
Mastering a programming language
is highly necessary to pursue Data Science. Strongly recommend Python version 3
- Python IDE
- Understanding Operators
- Variables and Data Types
- Conditional Statements
- Looping Constructs
- Python Control structures
- Function Modules
- Functions
- Data Structure
- Lists
- Dictionaries
- Exception and file Handling
- Handson Project
Unit
3: Python Libraries for Data Science - 10 hours
- Understanding Standard Libraries and packages like
Matplotlib
- Numpy
- Pandas & Scipy
- Seaborn & Scikit-Learn,
- BeautifulSoup, Bokeh, Urllib, etc.
- Reading a CSV File in Python
- Data Frames and basic operations with Data Frames
- Indexing a Data Frame
- Anaconda distribution
Unit
4: Common Machine Learning Algorithms and Intro to AI - 30 hours
- Supervised, Unsupervised and Reinforcement Learning
- Linear Regression,Logistic Regression,Decision Tree
- K-Means,Random Forest
- Seaborn & Scikit-Learn,
- Dimensionality Reduction Algorithms - PCA
- Gradient Boosting algorithms
-GBM,XGBoost,LightGBM,CatBoost
Unit
5: Deep Learning - 20 hours
- Artificial Neural Networks
- Neurons, ANN & Working
- Single Layer Perceptron Model
- Multi-layer Neural Network
- Cost Function Formation
- Applying Gradient Descent Algorithm
- Back-propagation Algorithm & Mathematical
Modelling
- Use Cases of ANN
Unit
6: Introduction to NLP- 20 hours
A) Text Preprocessing
- Noise Removal
- Lexicon Normalization
- Lemmatization
- Stemming
- Object Standardization
B)Text to Features (Feature
Engineering on text data)
- Syntactic Parsing - Dependency Grammar,Part of
Speech(POS) Tagging
- Entity Parsing - Phrase Detection,Named Entity
Recognition,Topic Modelling,N-Grams
- Statistical features - TF – IDF,Frequency / Density
Features,Readability Features
- Word Embeddings
C)Important tasks of NLP
- Text Classification
- Text Matching -Levenshtein Distance,Phonetic
Matching,Flexible String Matching
- Co reference Resolution - document summarization,
question answering, and information extraction
- Other NLP problems / tasks - Text
Summarization,Machine Translation ,NLG/NLU,OCR,Document to Information
D)Important NLP libraries
- Scikit-learn: Machine learning in Python
- Natural Language Toolkit (NLTK): The complete
toolkit for all NLP techniques.
- Pattern – A web mining module for the with tools
for NLP and machine learning.
- TextBlob – Easy to use NLP tools API, built on top
of NLTK and Pattern.
- spaCy – Industrial strength NLP with Python and Cython.
- Gensim – Topic Modelling for Humans
- Stanford Core NLP – NLP services and packages by
Stanford NLP Group.
Unit
7: CNN and RNN - 20 hours
- Convolutional Neural Networks (CNN)
- Introduction to CNNs
- CNNs Application
- Architecture of a CNN
- Convolution and Pooling layers in a CNN
- Understanding and Visualizing a CNN
- Image classification using Keras deep learning
library
- Recurrent Neural Networks (RNN)
- Intro to RNN Model
- Application use cases of RNN
- Training RNNs with Backpropagation
- Long Short-Term memory (LSTM)
- Recurrent Neural Network Model
- Deep Learning Frameworks
Unit
8: Deep Learning Frameworks and Tensorflow -10 hours
- Introducing Tensors
- Plane Vectors
- Tensors
- Installing TensorFlow
- Getting Started With TensorFlow: Basics
To build a neural network and how
to train, evaluate and optimize it with TensorFlow
- TensorFlow Core: The main TensorFlow library which
are widely popular for deep learning implementations
- Keras: Keras apis with TensorFlow backend
only
- TensorFlow Lite: Library for mobile/embedded device
based lightweight solutions
- TFX: TensorFlow Extended, a production scale
platform for implementing end to end machine learning solutions. It is
available on GitHub via 4 repos
- TensorFlow Transform, TensorFlow Model Analysis,
TensorFlow Serving, TensorFlow Data Validation
Unit
9: Capstone Project - 20 hours
- Belgian Traffic Signs: Background/ MNIST/CIFAR
Dataset
- Loading And Exploring The Data
- Traffic Sign Statistics
- Visualizing The Traffic Signs
- Feature Extraction
- Re-scaling Images
- Deep Learning With TensorFlow
- Modeling The Neural Network
- Running The Neural Network
- Evaluating The Neural Network