Visão Geral
Este curso aprofunda o uso dos Processors e Aggregators do Telegraf, mostrando como transformar, enriquecer, filtrar e consolidar métricas antes do envio para o backend de armazenamento. O foco está na construção de pipelines eficientes, redução de volume de dados e melhoria da qualidade das métricas coletadas.
Conteúdo Programatico
Module 1 – Metric Processing Fundamentals
- Why process metrics
- Raw vs processed metrics
- Processing in time-series pipelines
- Common processing use cases
Module 2 – Telegraf Processor Plugins Overview
- Processor plugin lifecycle
- Execution order and chaining
- Processors vs inputs responsibilities
- Configuration fundamentals
Module 3 – Common Processor Plugins
- Converter processor
- Enum processor
- Rename and regex processors
- Starlark processor basics
Module 4 – Metric Filtering and Enrichment
- Tag and field filtering
- Adding and removing tags
- Normalizing metric names
- Data standardization strategies
Module 5 – Telegraf Aggregator Plugins Overview
- Aggregator execution model
- Time-based aggregation
- Aggregators vs database aggregation
- Aggregation design considerations
Module 6 – Common Aggregator Plugins
- Basicstats aggregator
- Histogram aggregator
- MinMax aggregator
- Merge and deduplication concepts
Module 7 – Optimizing Pipelines with Processors and Aggregators
- Reducing metric volume
- Controlling data granularity
- Improving ingestion performance
- Pipeline performance tuning
Module 8 – Real-World Processing Scenarios
- Infrastructure metric processing
- Application metric normalization
- Industrial and IoT data aggregation
- Best practices and common pitfalls