Visão Geral
O Curso Snowflake Fundamentals foi desenvolvido para profissionais que desejam adquirir uma base sólida na utilização da plataforma Snowflake Data Cloud, desde a criação de ambientes até a execução de consultas e integração com ferramentas externas.
Durante o treinamento, o participante aprenderá os conceitos essenciais de arquitetura, armazenamento, processamento, segurança, e otimização de consultas, com uma abordagem teórica e prática.
Por meio de laboratórios reais, os alunos irão configurar instâncias Snowflake, manipular dados e compreender o funcionamento dos principais componentes da plataforma, preparando-se para o uso corporativo e para certificações oficiais Snowflake.
Conteúdo Programatico
Module 1: Introduction to Snowflake and the Data Cloud
- What is Snowflake? Overview and key features
- Evolution of cloud data platforms
- Snowflake Data Cloud ecosystem
- Snowflake Editions and deployment options (AWS, Azure, GCP)
- Snowflake UI (Snowsight) and SnowSQL CLI overview
Module 2: Understanding Snowflake Architecture
- The three-layer architecture: Storage, Compute, and Services
- Separation of compute and storage explained
- Virtual Warehouses and query execution process
- Automatic scaling and caching concepts
- Data storage format and micro-partitions
Module 3: Setting Up and Managing Snowflake Environments
- Creating databases, schemas, and tables
- Understanding roles, users, and privileges
- Resource monitors and account usage views
- Setting up warehouses and auto-suspend/resume features
- Using worksheets and executing SQL commands
Module 4: Loading and Unloading Data
- Internal and external stages overview
- File formats supported by Snowflake (CSV, JSON, Parquet, Avro)
- COPY INTO command for data loading
- Data unloading and exporting best practices
- Using Snowpipe for continuous data ingestion
Module 5: Working with Data in Snowflake
- Querying data using SQL
- Working with semi-structured data (VARIANT, JSON, and FLATTEN)
- Views, temporary tables, and materialized views
- Joins, aggregations, and analytical functions
- Time Travel and data versioning
Module 6: Security, Access Control, and Governance
- Role-Based Access Control (RBAC) in Snowflake
- Managing users, roles, and privileges
- Network policies and encryption
- Data masking and secure data sharing
- Monitoring account usage and resource consumption
Module 7: Query Optimization and Performance Basics
- Query profile and execution plan overview
- Warehouse sizing and scaling for performance
- Understanding caching layers (result, data, metadata)
- Avoiding anti-patterns in queries
- Best practices for efficient query design
Module 8: Cost Management and Monitoring
- Understanding Snowflake’s credit system
- Warehouse usage and cost breakdown
- Using Resource Monitors for cost control
- Query cost optimization strategies
- Practical exercises on cost management
Module 9: Integrations and Ecosystem
- Connecting Snowflake with Power BI, Tableau, and Looker
- Integration with Azure Data Factory and AWS Glue
- Snowflake connectors for Python, Spark, and Kafka
- Working with APIs and Snowflake Partner Connect
- Data sharing and external table access
Module 10: Hands-on Labs
- Create and manage your Snowflake environment
- Load and query structured and semi-structured data
- Implement secure data sharing between accounts
- Analyze query performance and optimize results
- Final project: build a mini data pipeline on Snowflake
Module 11: Best Practices and Certification Preparation
- Snowflake best practices for data engineering
- Security and compliance recommendations
- Performance and cost optimization checklist
- Introduction to the SnowPro Core Certification exam topics
- Tips and resources for further learning
Module 12: Real-World Scenarios
- Common architecture patterns in Snowflake projects
- Migration from on-premise to Snowflake
- Managing multi-cloud deployments
- Data governance and collaboration strategies
- Case study: designing a data platform using Snowflake