Visão Geral
O Curso Recommender Systems, foi elaborado como uma introdução abrangente aos Sistemas de Recomendação. É necessário um bom entendimento do aprendizado de máquina básico e um entendimento razoável da álgebra linear.
Pre-Requisitos
Aprendizado profundo básico: neurônios, tipos de camadas, redes, funções de perda, otimizadores, overfitting, Tensorflow
Materiais
Inglês/Português/Lab Prático
Conteúdo Programatico
Recommender Systems and where to find them
- Google
- Ads
- Netflix
Basic Recommender Systems
- Cosine Distance
- SVD
- SVD for recommendation system factorization
Hands-on Lab:
- Implement Singular Value Decomposition
- Understand how it affects the Cosine Distance
Candidate Generation
- Content Based Filtering
- Collaborative Filtering
- Matrix Factorization
Hands-on Lab: Use the studied matrix factorization techniques to implement a basic recommendation system and benchmark the factorization methods
Recommender using Deep Neural Networks
- Softmax Model
- Softmax Embedding
- Embeddings for Neural Networks
- Item2Vec
Hands-on Lab: Build a recommendation system using neural networks embeddings for IMDB movies
Ranking
- Retrieval
- Scoring
- Re-ranking
Hands-on Lab:
- Learn how to improve your previous model by understanding how the movie ranking is made
- Implement your Collaborative Filtering and Hybrid Collaborative Filtering methods to make a better recommendation system
Autoencoder for Recommender Systems
- Autoencoders
- Latent Spaces
- Variational Autoencoders
Hands-on Lab: Build a recommendation system for retail stores using Autoencoders
TENHO INTERESSE