Visão Geral
O Curso PyTorch Fundamentals foi desenvolvido para introduzir profissionais às bases do deep learning usando uma das bibliotecas mais poderosas e populares do mercado: PyTorch, criada pelo Facebook AI Research.
Durante o treinamento, os alunos aprenderão desde os fundamentos de tensores e operações até a construção, treinamento, avaliação e interpretação de modelos de redes neurais.
Ao final, cada participante será capaz de criar modelos práticos e compreensíveis, dominando a base necessária para avançar em visão computacional, NLP, IA generativa e aplicações reais de inteligência artificial.
Conteúdo Programatico
Module 1 – Introduction to PyTorch
- What is PyTorch and why it is used
- Deep Learning overview
- CPU vs GPU workflows
- Installing PyTorch
- The PyTorch ecosystem: TorchVision, TorchText, TorchAudio
Module 2 – Working with Tensors
- Creating and manipulating tensors
- Tensor operations
- Indexing, slicing, reshaping
- Broadcasting rules
- Moving tensors between CPU and GPU
- Practical tensor exercises
Module 3 – Autograd and Automatic Differentiation
- Understanding computational graphs
- Gradient tracking
- Backpropagation with PyTorch
- Autograd in practice
- Disabling gradients for inference
Module 4 – Building Neural Networks with PyTorch
- Introduction to
torch.nn
- Layers, activation functions, loss functions
- Understanding forward passes
- Creating models using
nn.Module
- Working with parameters
Module 5 – Training and Optimization
- The training loop explained step-by-step
- Optimizers: SGD, Adam, RMSprop
- Loss functions for regression and classification
- Evaluating performance
- Saving and loading models
Module 6 – Data Handling and Preprocessing
- Introduction to
Dataset and DataLoader
- Creating custom datasets
- Using built-in datasets (MNIST, CIFAR)
- Transformations and preprocessing pipelines
- Batch processing and shuffling
Module 7 – Building Your First Deep Learning Projects
- Image classification model using MNIST
- Binary classification example
- Overfitting vs underfitting
- Training best practices
- Exporting models
Module 8 – Using PyTorch with GPU
- Checking GPU availability
- Moving models and tensors to GPU
- Best practices for CUDA
- Performance tips
Module 9 – Introduction to Model Evaluation
- Accuracy, loss, confusion matrix
- Validation split and test set
- Logging and debugging training runs
- Introduction to TensorBoard with PyTorch
Module 10 – Capstone Project
Students build a complete neural network model, including:
- Dataset preparation
- Model design and training
- Evaluation and metrics
- Saving and loading models
- Presenting results