Visão Geral
O curso "Python for Image Processing" ensina como manipular, processar e analisar imagens digitais utilizando Python e suas bibliotecas especializadas. Image processing é uma área crucial para várias aplicações, desde visão computacional até o desenvolvimento de sistemas de inteligência artificial e aprendizado de máquina. Durante o curso, os alunos aprenderão técnicas para aprimoramento de imagens, filtragem, detecção de bordas, segmentação e manipulação de imagens utilizando bibliotecas populares como OpenCV, Pillow e Scikit-image.
Conteúdo Programatico
Introduction to Image Processing
- Fundamentals of image processing
- Overview of Python libraries for image processing
- Setting up the environment with OpenCV, Pillow, and Scikit-image
Image Representation and Manipulation
- Understanding image formats (JPEG, PNG, TIFF, etc.)
- Reading, displaying, and saving images with Python
- Image resizing, cropping, and rotation
Basic Image Processing Techniques
- Converting images to grayscale and binary
- Histogram equalization and image contrast adjustment
- Applying image filters (blur, sharpen, edge detection)
Working with OpenCV
- Introduction to OpenCV for image processing
- Performing basic operations (resizing, rotating, flipping)
- Detecting edges using Canny edge detection
Advanced Image Filtering and Enhancement
- Applying convolution and custom filters
- Gaussian, median, and bilateral filtering
- Enhancing images through morphological operations
Image Segmentation Techniques
- Thresholding techniques (global, adaptive, Otsu’s method)
- Region-based segmentation (Watershed algorithm)
- Contour detection and analysis
Feature Extraction and Object Detection
- Detecting key points using Harris and SIFT
- Feature matching and object tracking
- Template matching for object recognition
Introduction to Machine Learning for Image Processing
- Using Python libraries for machine learning (Scikit-learn, TensorFlow)
- Applying image classification techniques
- Building a basic image classifier using machine learning
Working with Image Datasets
- Loading and managing large image datasets
- Preprocessing images for deep learning models
- Data augmentation techniques to enhance image datasets
Project: Building an Image Processing Application
- Real-world application: Designing an image processing pipeline
- Implementing edge detection and object recognition
- Deploying an image processing model in a production environment