Visão Geral
O Curso Python for Financial Analysis, foi desenvolvido para capacitar profissionais do mercado financeiro e áreas correlatas a utilizar Python como uma ferramenta poderosa para realizar análises financeiras, modelagem e automação de processos. Python se tornou amplamente utilizado no setor financeiro devido à sua capacidade de lidar com grandes volumes de dados, executar cálculos complexos e automatizar fluxos de trabalho. Neste curso, você aprenderá a aplicar Python em atividades como análise de investimentos, cálculos financeiros, modelagem estatística e otimização de portfólios.
Conteúdo Programatico
Module 1: Introduction to Python for Financial Analysis
- Overview of financial analysis with Python
- Setting up Python environment for finance-related tasks
- Introduction to key Python libraries: Pandas, NumPy, Matplotlib
- Working with financial datasets
Module 2: Data Collection and Processing
- Extracting financial data from APIs (yfinance, Alpha Vantage, Quandl)
- Importing and handling large datasets (CSV, Excel, databases)
- Cleaning and preparing financial data for analysis
- Time series manipulation with Pandas
Module 3: Financial Calculations and Modeling
- Performing basic financial calculations (ROI, NPV, IRR)
- Calculating returns, risks, and volatility of financial assets
- Building financial models with Python
- Implementing discount cash flow (DCF) analysis and other valuation methods
Module 4: Statistical Analysis and Visualization
- Introduction to statistical methods for financial analysis
- Performing correlation and regression analysis
- Visualizing financial data with Matplotlib and Seaborn
- Identifying trends and patterns in time series data
Module 5: Portfolio Optimization and Risk Management
- Introduction to portfolio theory and optimization
- Calculating efficient frontiers using Python
- Implementing the Capital Asset Pricing Model (CAPM) in Python
- Measuring portfolio risk with Value at Risk (VaR) and other risk metrics
Module 6: Automating Financial Reports and Dashboards
- Automating financial data collection and analysis workflows
- Building financial dashboards using Python and libraries like Plotly
- Generating automated reports in Excel and PDF formats
- Scheduling and automating recurring financial tasks with Python
Module 7: Predictive Modeling and Machine Learning in Finance
- Introduction to machine learning in finance
- Developing models for stock price prediction and portfolio forecasting
- Implementing classification and regression models for financial data
- Applying machine learning techniques to optimize financial decision-making
Module 8: Advanced Topics in Financial Analysis
- Sentiment analysis of financial news using Python
- Working with alternative data sources for financial insights
- Implementing algorithmic trading strategies in Python
- Risk analysis and scenario simulations in Python
Module 9: Final Project - Building a Comprehensive Financial Model
- Designing and implementing a financial model using real-world data
- Performing detailed analysis and generating visualizations
- Automating data updates and reporting for financial decision-making
- Presenting the final financial model and insights