Curso Python for Finance

  • Development

Curso Python for Finance

24 horas
Visão Geral

Curso Python for Finance. Maximize os retornos. Visualize seu portfólio. Execute seu mais recente Algoritmo de Negociação Assassino. Tudo isso e muito mais estão facilmente ao seu alcance aproveitando o poder do código aberto do Python.

Este Curso Python for Finance, ensina como aplicar Python a uma ampla gama de aplicativos de tecnologia financeira, incluindo a aquisição de dados de provedores de dados financeiros populares, bem como a limpeza, exploração e visualização dos conjuntos de dados resultantes. Os participantes aprendem como abordar a implementação de modelos algorítmicos e como construir modelos ricos e perspicazes, com ênfase em ética, conformidade e segurança. 

Objetivo

Após realizar este Curso Python for Finance você será capaz de:

  • Extraia automaticamente dados financeiros de provedores de dados comuns
  • Saiba como limpar, agregar e manipular dados financeiros de forma eficaz
  • Conduzir análise elementar de série temporal
  • Compreender processos estocásticos e modelos de ruído comuns
  • Construir modelos para inferência e previsão, como ARIMA e regressão linear e logística
  • Gere visualizações poderosas, como gráficos de velas
  • Extraia dados financeiros raspando sites
  • Compreender os fundamentos dos modelos de aprendizado de máquina supervisionados e não supervisionados aplicados às finanças
  • Aplicar Redes Neurais Recorrentes (RNNs) e Unidades de Memória Longa e de Curto Prazo (LSTMs) a séries temporais financeiras e compreender suas limitações
  • Entenda os princípios por trás da tecnologia Blockchain  
Pre-Requisitos
  • Todos os alunos do treinamento Python For Finance já devem estar familiarizados com a sintaxe e os conceitos fundamentais do Python.
Materiais
Inglês/Português/Lab Prático
Conteúdo Programatico

Introduction

Crunching the Numbers: Numerical Python With NumPy

  • Introduction to the n-d-array
  • NumPy operations
  • Broadcasting
  • Missing data in NumPy (masked array)
  • NumPy structured arrays
  • Improving performance through vectorization
  • Random number generation
  • Introduction to Monte-Carlo methods
  • General approaches to implementing mathematical algorithms

Acquiring and Manipulating Financial Data With Pandas and Pandas-Datareader

  • Series versus DataFrames
  • Overview of data types in pandas
  • Pandas I/O tools: CSV/Excel/SQL
  • Pandas I/O tools: Pandas-datareader
  • Subsetting DataFrames
  • Creating and deleting variables
  • Discretization of continuous data
  • Scaling and standardizing data
  • Identifying duplicates
  • Dummy coding

Exploratory Data Analysis and Advanced Pandas Methods

  • Uni- and multivariate statistical summaries and detecting outliers
  • Group-wise calculations using pandas
  • Pivot tables
  • Long to wide and back: pivoting, stacking and melting
  • Python visualization: Matplotlib and seaborn
  • Pandas visualization: histograms, bar and box plots
  • Pandas visualization: Scatter plots and pie charts
  • Group-by plotting
  • Pandas plot formatting
  • mpl-finance and candlestick charts
  • Merging DataFrames
  • Pandas string methods
  • Implementing regular expressions in pandas
  • Handling missing data in pandas

Elementary Time Series Analysis

  • Date/time formats in Python and pandas
  • Running/rolling aggregates
  • Resampling

Stochastic Processes

  • Overview of noise models
  • Stationarity
  • Random walks and martingales
  • Brownian motion
  • Diffusion models
  • The Black-Scholes model—and its limitations

Time Series Forecasting

  • De-trending and seasonality
  • Interpolation and extrapolation
  • Auto-Regressive Integrated Moving Average (ARIMA) models

Measuring Impact: Testing For Group Differences

  • Null hypothesis testing and p-values
  • Group comparisons (p-values, t-tests, ANOVA, Chi-square tests)
  • Correlation

Progressing, With Regression Models

  • Linear regression
  • Logistic regression
  • Regression on count outcomes (Poisson processes)

Optional: Machine Learning Fundamentals for Finance with scikit-learn

  • Requirements: NumPy, pandas. Time required: 4 hours
  • Machine learning approaches to multivariate statistics
  • Machine Learning theory
  • Data pre-processing
  • Supervised versus Unsupervised learning
  • Unsupervised learning: clustering
    • Clustering algorithms
    • Evaluating cluster performance
  • Dimensionality reduction
    • A priori
    • Principal component analysis (PCA)
    • Penalized regression
  • Supervised learning: regression
    • Linear regression
    • Penalized linear regression
    • Stochastic gradient descent
    • Scoring new data sets
    • Cross-validation
    • Variance-bias trade-off
    • Feature importance
  • Supervised learning: classification
    • Logistic regression
    • LASSO
    • Random forests
    • Ensemble methods
    • Feature importance
    • Scoring new data sets
    • Cross-validation

Recurrent Neural Nets and LSTMs with PyTorch

  • Requirements: NumPy, pandas, Machine Learning fundamentals.
  • Introduction to PyTorch
    • Introduction to tensor algebra and calculus
    • Tensor algebra in PyTorch
    • Training and validating models
  • Regression in PyTorch
    • Optimizers in PyTorch
    • Linear regression
    • Logistic regression
  • Artificial Neural Networks
    • Overview of Artificial Neural Networks (ANNs)
    • Recurrent Neural Networks (RNNs)
    • Sequence models and Long Short-Term Memory Networks (LSTMs)
  • RNNs/LSTMs with PyTorch
    • Building, training and validating a basic ANN
    • Creating a RNN
    • Building a LSTM
    • Applications to financial time series, and cautionary tales

Scraping By: Obtaining Financial Data from Publicly Accessible Websites

  • Requirements: Base Python. Time required: 2 hours
  • Parsing HTML/CSS with BeautifulSoup
    • Navigating tree data structures
    • Selecting named node elements
    • Selecting by property
  • Establishing a Connection
    • Urllib3 and connections
    • POST and GET directives
  • Building a Web Scraper
    • Parsing a list of websites
    • Collecting and storing data
  • Advanced Scraping: Building a Web Spider with Scrapy

Blockchain technologies

  • Requirements: Basic Python, NumPy (useful, but not mandatory). Time required: 4 hours.
  • The Ingredients For a Blockchain
    • Transaction records
    • The distributed ledger
    • Chain validation
    • Nonces
  • The Hash Function
    • Overview of hash functions and tables
    • Cryptographic hash functions
    • Proof-of-work
  • Advanced Functions
    • Return statements
    • The JSON format
    • Exception trapping
    • Assertions
  • Constructing Your Own Blockchain
    • Generating a block
    • The genesis block
    • Generating a chain though block validation
  • Shortcomings of current blockchain technologies
TENHO INTERESSE

Cursos Relacionados

Curso Python Programação Advanced

32 horas

Curso SAP ABAP S4hana Developer Foundation

32 horas

Curso Full Stack and React Essentials

32 Horas

Curso Node.js for JavaScript Developers

24 horas

Curso Elasticsearch for Developers

16H

Curso Elastic Stack Foundation

24 horas

Curso Apache Spark™ Foundation

8 Horas