Visão Geral
O Curso Python for Big Data with PySpark, oferece uma imersão prática no processamento de grandes volumes de dados utilizando o framework Apache Spark, com a linguagem Python. PySpark é amplamente utilizado por grandes empresas para realizar análises de dados em larga escala, com processamento distribuído, facilitando a manipulação de datasets gigantescos de maneira eficiente. Durante o curso, os alunos aprenderão a construir pipelines de dados, processar e analisar dados com PySpark, e otimizar fluxos de trabalho de Big Data.
Objetivo
Após realizar este curso Python for Big Data with PySpark, você será capaz de:
- Processar grandes volumes de dados utilizando PySpark
- Construir pipelines de dados distribuídos com Apache Spark
- Realizar análises e transformar dados em larga escala
- Otimizar tarefas de processamento e gerenciar clusters Spark
Publico Alvo
- Engenheiros de dados
- Cientistas de dados
- Desenvolvedores que trabalham com grandes volumes de dados
- Estudantes e profissionais de TI interessados em análise de Big Data
Pre-Requisitos
- Conhecimentos básicos em Python
- Familiaridade com SQL e bancos de dados
- Noções de Big Data e Apache Spark (desejável)
Materiais
Inglês + Exercícios + Lab Pratico
Conteúdo Programatico
Introduction to Big Data and PySpark
- Overview of Big Data concepts
- Understanding the architecture of Apache Spark
- Setting up PySpark in a local and distributed environment
PySpark Essentials
- Introduction to Resilient Distributed Datasets (RDDs)
- Working with DataFrames in PySpark
- PySpark SQL for querying large datasets
Data Ingestion and Preprocessing
- Loading data from multiple sources (CSV, JSON, Parquet, etc.)
- Cleaning and transforming data with PySpark
- Handling missing and inconsistent data at scale
Working with RDDs and DataFrames
- Understanding RDD transformations and actions
- Manipulating and processing DataFrames in PySpark
- Optimizing data transformations for performance
Big Data Analytics with PySpark
- Performing aggregations and joins on large datasets
- Analyzing structured and unstructured data
- Using PySpark SQL for advanced queries
Machine Learning with PySpark (MLlib)
- Introduction to PySpark's MLlib library
- Building and training machine learning models at scale
- Applying supervised and unsupervised learning with PySpark
Real-Time Data Processing with PySpark Streaming
- Introduction to Spark Streaming
- Processing real-time data streams with PySpark
- Integrating PySpark with Kafka and other data sources
Optimizing Spark Jobs
- Understanding Spark's execution model
- Tuning Spark jobs for performance
- Managing and monitoring Spark jobs in a cluster
Building and Deploying Big Data Pipelines
- Designing ETL (Extract, Transform, Load) pipelines with PySpark
- Deploying Spark applications on a distributed cluster
- Managing Spark jobs in a production environment
Case Study and Project Development
- Real-world case study: Building a data pipeline with PySpark
- Hands-on project: End-to-end Big Data solution using PySpark
- Best practices for handling Big Data with PySpark
TENHO INTERESSE