Visão Geral
O curso Prompt Engineering Profissional foi desenvolvido para capacitar profissionais a projetar, otimizar e avaliar prompts avançados para modelos de linguagem de grande escala (LLMs) e modelos multimodais. O curso aborda desde fundamentos técnicos do funcionamento dos modelos até técnicas profissionais de engenharia de prompts aplicadas a contextos reais como automação, análise de dados, geração de código, suporte à decisão, agentes inteligentes e aplicações corporativas. São exploradas abordagens modernas como chain-of-thought, tool usage, retrieval-augmented generation (RAG), prompt templates, avaliação de desempenho e mitigação de vieses.
Conteúdo Programatico
Module 1: Foundations of Prompt Engineering
- What is Prompt Engineering
- How Large Language Models Work
- Tokens, Context Windows and Temperature
- Determinism vs Creativity in Prompts
Module 2: Prompt Design Principles
- Instruction-Based Prompting
- Role and Persona Definition
- Output Formatting and Constraints
- Prompt Clarity and Ambiguity Reduction
Module 3: Few-Shot and Example-Driven Prompting
- Zero-Shot vs Few-Shot Prompting
- Example Selection Strategies
- Prompt Compression Techniques
- Prompt Length Optimization
Module 4: Chain-of-Thought and Reasoning Techniques
- Chain-of-Thought Prompting
- Self-Consistency and Reasoning Paths
- Step-by-Step Reasoning Control
- When Not to Use Chain-of-Thought
Module 5: Advanced Prompt Patterns
- ReAct Pattern
- Tree-of-Thoughts
- Debate and Critique Prompts
- Meta-Prompting Techniques
Module 6: Prompt Engineering for Code and Data
- Code Generation Prompts
- Debugging and Refactoring with Prompts
- Data Analysis and Insight Extraction
- SQL and API-Oriented Prompts
Module 7: Multimodal Prompt Engineering
- Image Understanding and Captioning Prompts
- Vision-Language Prompt Design
- Audio and Transcription Prompting
- Cross-Modal Reasoning
Module 8: Tool Usage and Function Calling
- Tool-Augmented Prompts
- Function Calling Concepts
- Structured Outputs with JSON Schemas
- Error Handling in Tool-Based Prompts
Module 9: Retrieval-Augmented Generation (RAG)
- RAG Architecture Overview
- Prompting with Retrieved Context
- Context Ranking and Filtering
- Reducing Hallucinations with RAG
Module 10: Prompt Evaluation and Optimization
- Prompt Testing Methodologies
- Automatic and Human Evaluation
- Metrics for Prompt Quality
- Prompt Versioning and A/B Testing
Module 11: Security, Ethics and Reliability
- Prompt Injection Attacks
- Data Leakage Risks
- Bias and Fairness Considerations
- Guardrails and Safety Prompts
Module 12: Professional Use Cases and Capstone
- Enterprise Automation Use Cases
- AI Agents and Workflow Orchestration
- Prompt Engineering in Production Systems
- Capstone Project Design