Visão Geral
Ao longo do Curso Open Source Generative AI, você aprenderá sobre arquiteturas baseadas em transformadores de IA, os fundamentos da programação Python para implantações de IA e a implantação de modelos de Transformer de código aberto. Você também explorará a importância dos requisitos de hardware no desempenho da IA, comparando diferentes arquiteturas de GPU e entendendo como combinar os requisitos de IA com hardware adequado. O curso se aprofunda em técnicas de treinamento, incluindo retropropagação, descida de gradiente e várias tarefas de IA, como classificação, regressão e agrupamento
Objetivo
Após participar com êxito do Curso Open Source Generative AI você será capaz de:
- A mecânica do aprendizado profundo
- Arquitetura do Transformador
- Requisitos de hardware
- Usando Llama para realizar tarefas de processamento de linguagem natural
- Implantar um modelo de linguagem natural
- Ajuste fino do modelo
Materiais
Inglês/Português/Lab Prático
Conteúdo Programatico
The Mechanics of Deep Learning
- Gain Experience using the tools and practices to successfully train deep neural networks
- Learn the mechanics of deep learning
- Explore prompt learning methods for controlling and influencing model outputs
- Learn the process of training popular industry models
- Learn how to apply various transformations or modifications to existing dataset to create additional training examples.
- Use CNNs (convolutional Neural Networks) to analyze images and perform image augmentation
- Learn how CNNs improve image prediction accuracy
- Hands-on exercises to perform fine-tuning and prompt learning with llama-based transformer models
Pre-trained model activities
- Learn how to select and use pre-trained models to produce immediate results
- Learn how to train models using RNNs (Recurrent Neural Networks) that will train models in a sequential and time-dependent manner
- Gain proficiency with Transfer learning techniques to reduce training time and improve generalization, that is, have the AI perform well on unseen or previously unseen data
- Write an AI data generator that will produce synthetic data to train your model. This is critical when actual data is not available, too costly, or restricted.
- Learn how to train a model using feature extraction, by writing a program, that will derive a set of informative features from classroom provided original data. You will then use the data as input for machine training.
Transformer architecture
- Build a transformer architecture
- Learn why the self-attention matrix is a key component of a transformer model
- Learn how to compute the self-attention matrix based on:
- Input Representation: (Query, Key, and Value)
- Computing Similarities
- Attention Weights
- Weighted Sum
- Final Output
- Use a pretrained model to translate English to Spanish
Use llama to perform Natural Language Processing tasks
- Rewrite a classic poem of a well-known author in the tone of another well know author
- Use Named Entity Recognition (NER) to identify Cajun food in recipes
- Use domain specific models to improve project accuracy
Deploy a natural language model
- Download, install and implement a trained NLP model
- Deploy your NLP to perform the following tasks:
- text classification
- sentiment analysis
- machine translation
- chatbots
- question answering
TENHO INTERESSE