Visão Geral
Este curso aborda os fundamentos e práticas avançadas de observabilidade aplicadas a plataformas de dados modernas. O foco está em garantir confiabilidade, performance, rastreabilidade e qualidade operacional de pipelines de dados, engines de processamento e camadas analíticas. O aluno aprenderá a observar sistemas de dados de ponta a ponta por meio de métricas, logs, traces e indicadores de qualidade, preparando plataformas para operação em produção e ambientes críticos de negócio.
Conteúdo Programatico
Module 1: Observability Fundamentals
- What is observability
- Observability vs monitoring
- Data platforms observability challenges
- Modern observability principles
Module 2: Data Platform Architecture Overview
- Ingestion layers
- Processing and transformation engines
- Storage and analytics layers
- End-to-end data flow
Module 3: Metrics for Data Platforms
- Pipeline performance metrics
- Latency and throughput
- Volume and freshness metrics
- Resource utilization
Module 4: Logging Strategies
- Structured logs
- Log levels and standards
- Correlation and context
- Debugging with logs
Module 5: Distributed Tracing
- Traces and spans
- End-to-end pipeline tracing
- Dependency visualization
- Bottleneck identification
Module 6: Data Quality Observability
- Data quality dimensions
- Freshness and completeness
- Validity and consistency
- Quality metrics and alerts
Module 7: Reliability and Alerting
- SLIs, SLOs and SLAs for data
- Alert fatigue and tuning
- Incident detection
- On-call strategies
Module 8: Observability in Orchestrated Pipelines
- Observability in workflow orchestration
- DAG-level visibility
- Task-level metrics
- Failure propagation
Module 9: Operating Observability at Scale
- High-cardinality data
- Cost and retention strategies
- Multi-environment observability
- Scaling observability platforms
Module 10: Best Practices and Real-World Scenarios
- Designing observable data platforms
- Common anti-patterns
- Maturity models
- Preparing for production excellence