Visão Geral
Curso Mojo Profundo Otimizacao de Memoria e Propriedade Ownership. Este curso técnico é um mergulho intensivo nos mecanismos de memória e abstrações de baixo nível que permitem ao Mojo atingir desempenho comparável a C++ e Rust. O curso foca na transição do modelo de memória gerenciado (Garbage Collector) do Python para o modelo de propriedade (Ownership) do Mojo, explorando como a tipagem estática e o controle de layout de memória via structs garantem segurança sem penalidade de tempo de execução. Os alunos aprenderão a controlar o ciclo de vida dos dados, distinguir entre semântica de Cópia e Movimentação (Copy vs. Move), e utilizar referências com o verificador de empréstimos (borrow checker) para eliminar classes inteiras de erros de concorrência e uso de memória.
Conteúdo Programatico
Module 1: The Mojo Memory Model Foundation
- Why Python's Garbage Collection (GC) model limits performance.
- Introduction to Mojo's non-GC approach: Safety via static analysis.
- Stack vs. Heap Memory in Mojo context.
- Comparing
def (dynamic) vs. fn (static) memory constraints.
Module 2: Structs and Data Layout for Performance
- Defining Structs: Fixed memory layout and its performance benefits over Python Classes.
- Struct lifecycle methods:
__init__ (Constructor) and __del__ (Destructor).
- Implementing custom memory deallocation within Structs.
- Data Oriented Design (DOD) principles in Mojo.
Module 3: Ownership and Move Semantics
- The concept of Ownership: The core safety mechanism.
- Rules of Ownership: Single owner at any time.
- Move Semantics: Transferring ownership and invalidating the source.
- Deep Dive into the
^ (move) operator and its applications.
- Differentiating types that are moved by default vs. copied by default.
Module 4: Copy Semantics and Shallow vs. Deep Copies
- Implementing Copyability: The
__copyinit__ method.
- Shallow Copying: Copying pointers/references.
- Deep Copying: Implementing custom logic for full data duplication.
- Trade-offs: Performance cost of copying vs. safety of moving.
Module 5: Borrowing and References (The Borrow Checker)
- The concept of Borrowing: Accessing data without ownership.
- Immutable References (Shared Borrowing).
- Mutable References: The
inout keyword (Exclusive Borrowing).
- The "One Mutable XOR Many Immutable" Rule.
- Common compiler errors related to the Borrow Checker and how to resolve them.
Module 6: Advanced Memory and Pointers
- Introduction to raw pointers (
Pointer[T]).
- Manual memory allocation and deallocation functions.
- Unsafe blocks and when to use them responsibly.
- Implementing data structures that require explicit memory management (e.g., custom linked lists).
Module 7: Metaprogramming and Memory Optimization
- Using
alias and comptime to generate memory-efficient code.
- Compile-time array sizing and stack allocation for fixed-size data.
- Leveraging generics (parameterized types) for memory-safe reusable containers.
Module 8: Capstone Project: High-Performance Data Container
- Design and implement a custom dynamic array (
Vec[T]) structure in pure Mojo.
- The array must manage its memory (allocation/deallocation).
- The array must enforce Ownership rules for elements.
- Benchmark the custom container against a standard Mojo or Python list structure.