Curso MLOps on Google Cloud

  • DevOps | CI | CD | Kubernetes | Web3

Curso MLOps on Google Cloud

24 horas
Visão Geral

O curso MLOps on Google Cloud oferece uma formação completa sobre Machine Learning e MLOps utilizando os serviços da Google Cloud Platform. O participante aprenderá desde os fundamentos de Machine Learning até a construção de pipelines de dados, feature engineering, treinamento, validação, implantação e orquestração de modelos em produção, utilizando ferramentas como Dataflow, BigQuery ML, AutoML e Vertex AI.

Objetivo

Após realizar este Curso MLOps on Google Cloud, você será capaz de:

  • Simplifique e automatize as operações de aprendizado de máquina usando as ferramentas do Google Cloud.
  • Aprenda o básico de Aprendizado de Máquina
  • Implemente as etapas necessárias para construir um pipeline de aprendizado de máquina (ML) de produção.
  • Crie pipelines de dados em lote e de streaming com o Google Cloud Dataflow.
  • Realize engenharia de recursos usando Dataflow e BigQuery.
  • Treine e valide modelos de aprendizado de máquina usando BigQuery ML, AutoML e TensorFlow.
  • Implante modelos usando a automação do Google Cloud.
  • Utilize a IA da Vertex para gerenciar conjuntos de dados de aprendizado de máquina, modelos, experimentos e implantação.
  • Programe pipelines da Vertex AI usando o Kubeflow.
Publico Alvo
  • Cientistas de dados
  • Engenheiros de Machine Learning
  • Engenheiros de dados
  • Arquitetos de soluções em cloud
  • Profissionais de TI que atuam com dados e IA
  • Estudantes de ciência de dados e inteligência artificial
Pre-Requisitos

 

 

 

Materiais
Inglês/Português + Exercícios + Lab Pratico
Conteúdo Programatico

Module 1: Machine Learning Fundamentals

  1. ML Basics
  2. ML Examples
  3. Models and Examples
  4. Features and Labels
  5. Training, Validation Data, and Test Data
  6. Training and Validation
  7. Hyperparameters
  8. Prediction
  9. Linear Regression Models
  10. Linear Regression Examples
  11. Validating Linear Regression Models
  12. RMSE
  13. Exercise: Building a Linear Regression Model
  14. Classification Models
  15. Classification Examples
  16. Validating Classification Models
  17. Accuracy
  18. Precision
  19. Recall
  20. Area Under Receiver Operator Curve (AUROC)
  21. Exercise: Building a Classification Model
  22. Neural Networks
  23. Neurons, Layers, and Weights
  24. Neural Network Examples
  25. Exercise: Building a Neural Network

Module 2: MLOps Concepts and Pipelines

  1. ML Steps
  2. Data Collection
  3. Feature Engineering
  4. Training and Validation
  5. Putting Models Into Production
  6. ML Pipelines Overview
  7. Batch ML Pipelines
  8. Online Prediction Models
  9. On-device Prediction Models
  10. Streaming ML Pipelines

Module 3: Creating Data Pipelines with Dataflow

  1. Dataflow Basics
  2. Apache Beam Overview
  3. Creating a Pipeline
  4. Pipeline Basics
  5. PCollections
  6. Transforms
  7. Input and Output
  8. Dataflow Templates
  9. Exercise: Programming Apache Beam Pipelines
  10. Running Batch Dataflow Pipelines
  11. Running Dataflow Jobs
  12. Exercise: Running Dataflow Jobs
  13. Streaming Dataflow Pipelines
  14. Streaming Pipeline Examples
  15. Exercise: Building a Streaming Pipeline with Dataflow Templates

Module 4: Feature Engineering

  1. Feature Engineering Basics
  2. Analyzing Features
  3. Discovering Relationships in Data
  4. Handling Incomplete or Invalid Data
  5. One-Hot Encoding
  6. Feature Engineering in Dataflow
  7. Writing Transforms
  8. ParDo
  9. Side Inputs
  10. Dataflow SQL
  11. Exercise: Feature Engineering with Dataflow
  12. Feature Engineering with BigQuery
  13. Feature Tuning with SQL
  14. Joins and Filters
  15. User-Defined Functions
  16. Saving Results to Tables
  17. Exporting Tables
  18. Exercise: Feature Engineering with BigQuery
  19. Feature Engineering with TensorFlow
  20. TensorFlow Transform
  21. TensorFlow Schema
  22. Normalizing Features
  23. Bucketing Numeric Data
  24. Converting Strings to Integer Vocabularies

Module 5: Training and Validating ML Models on Google Cloud

  1. BigQuery ML Overview
  2. Training ML Models with SQL
  3. Model Types and Options
  4. Data Splitting
  5. Training and Validation
  6. Prediction
  7. Exercise: Programming Models with BigQuery ML
  8. AutoML Overview
  9. AutoML Tables
  10. AutoML Vision
  11. AutoML Natural Language
  12. AutoML Video
  13. Creating Datasets
  14. Data Labeling
  15. Training and Validation
  16. Exercise: Using AutoML Vision

Module 6: Vertex AI

  1. Vertex AI Basics
  2. Vertex AI Workflow
  3. Using Vertex AI
  4. Managing Training Data
  5. Datasets Overview
  6. Image Datasets
  7. Tabular Datasets
  8. Text Datasets
  9. Labeling Tasks
  10. Managing Models
  11. Training Models
  12. Deploying Models
  13. Importing Models from BigQuery ML
  14. Exporting Models
  15. Endpoints
  16. Online Predictions
  17. Batch Predictions
  18. Exercise: Creating and Deploying Vertex AI Models

Module 7: Vertex AI Pipelines

  1. Vertex AI Pipelines Overview
  2. AI Pipeline Architecture
  3. TFX vs Kubeflow Pipelines
  4. Google-Provided Pipeline Components
  5. Programming Custom Pipeline Components
  6. Running AI Pipelines
  7. Monitoring AI Pipelines
  8. Exercise: Running Vertex AI Pipelines
TENHO INTERESSE

Cursos Relacionados

Curso Ansible Red Hat Basics Automation Technical Foundation

16 horas

Curso Terraform Deploying to Oracle Cloud Infrastructure

24 Horas

Curso Ansible Linux Automation with Ansible

24 horas

Ansible Overview of Ansible architecture

16h

Advanced Automation: Ansible Best Practices

32h