Curso Microsoft SQL Implementing a SQL Data Warehouse

  • Microsoft SQL Server

Curso Microsoft SQL Implementing a SQL Data Warehouse

32 horas
Visão Geral

Este Curso Microsoft SQL Implementing a SQL Data Warehouse, ministrado por instrutor descreve como implementar uma plataforma de data warehouse para dar suporte a uma solução de BI. Os alunos aprenderão como criar um data warehouse com Microsoft® SQL Server® 2016 e com Azure SQL Data Warehouse, implementar ETL com SQL Server Integration Services e validar e limpar dados com SQL Server Data Quality Services e SQL Server Master Data Services .

Este curso substitui o CursoImplementando um Data Warehouse com Microsoft SQL Server (20463) .

Objetivo

Após concluir este Curso Microsoft SQL Implementing a SQL Data Warehouse, os alunos serão capazes de:

  • Descrever os principais elementos de uma solução de armazenamento de dados
  • Descrever as principais considerações de hardware para construir um data warehouse
  • Implementar um design lógico para um data warehouse
  • Implementar um design físico para um data warehouse
  • Criar índices columnstore
  • Implementando um Azure SQL Data Warehouse
  • Descrever os principais recursos do SSIS
  • Implementar um fluxo de dados usando o SSIS
  • Implemente o fluxo de controle usando tarefas e restrições de precedência
  • Crie pacotes dinâmicos que incluam variáveis ​​e parâmetros
  • Depurar pacotes SSIS
  • Descrever as considerações para implementar uma solução ETL
  • Implementar serviços de qualidade de dados
  • Implementar um modelo de Master Data Services
  • Descrever como você pode usar componentes personalizados para estender o SSIS
  • Implantar projetos SSIS
  • Descrever BI e cenários comuns de BI
Publico Alvo

O público principal deste curso são profissionais de banco de dados que precisam cumprir uma função de Desenvolvedor de Business Intelligence. Eles precisarão se concentrar no trabalho prático de criação de soluções de BI, incluindo implementação de Data Warehouse, ETL e limpeza de dados.

Pre-Requisitos

Para além da sua experiência profissional, os alunos que frequentam esta formação já devem possuir os seguintes conhecimentos técnicos:

  • Conhecimento básico do sistema operacional Microsoft Windows e sua funcionalidade principal.
  • Conhecimento em banco de dados relacional.
  • Alguma experiência com design de banco de dados.
Conteúdo Programatico

Module 1: Introduction to Data Warehousing This module describes data warehouse concepts and architecture consideration. Lessons

  • Overview of Data Warehousing
  • Considerations for a Data Warehouse Solution

Lab : Exploring a Data Warehouse Solution

  • Exploring data sources
  • Exploring an ETL process
  • Exploring a data warehouse

After completing this module, you will be able to:

  • Describe the key elements of a data warehousing solution
  • Describe the key considerations for a data warehousing solution

Module 2: Planning Data Warehouse Infrastructure This module describes the main hardware considerations for building a data warehouse. Lessons

  • Considerations for data warehouse infrastructure.
  • Planning data warehouse hardware.

Lab : Planning Data Warehouse Infrastructure

  • Planning data warehouse hardware

After completing this module, you will be able to:

  • Describe the main hardware considerations for building a data warehouse
  • Explain how to use reference architectures and data warehouse appliances to create a data warehouse

Module 3: Designing and Implementing a Data Warehouse This module describes how you go about designing and implementing a schema for a data warehouse. Lessons

  • Data warehouse design overview
  • Designing dimension tables
  • Designing fact tables
  • Physical Design for a Data Warehouse

Lab : Implementing a Data Warehouse Schema

  • Implementing a star schema
  • Implementing a snowflake schema
  • Implementing a time dimension table

After completing this module, you will be able to:

  • Implement a logical design for a data warehouse
  • Implement a physical design for a data warehouse

Module 4: Columnstore Indexes This module introduces Columnstore Indexes. Lessons

  • Introduction to Columnstore Indexes
  • Creating Columnstore Indexes
  • Working with Columnstore Indexes

Lab : Using Columnstore Indexes

  • Create a Columnstore index on the FactProductInventory table
  • Create a Columnstore index on the FactInternetSales table
  • Create a memory optimized Columnstore table

After completing this module, you will be able to:

  • Create Columnstore indexes
  • Work with Columnstore Indexes

Module 5: Implementing an Azure SQL Data Warehouse This module describes Azure SQL Data Warehouses and how to implement them. Lessons

  • Advantages of Azure SQL Data Warehouse
  • Implementing an Azure SQL Data Warehouse
  • Developing an Azure SQL Data Warehouse
  • Migrating to an Azure SQ Data Warehouse
  • Copying data with the Azure data factory

Lab : Implementing an Azure SQL Data Warehouse

  • Create an Azure SQL data warehouse database
  • Migrate to an Azure SQL Data warehouse database
  • Copy data with the Azure data factory

After completing this module, you will be able to:

  • Describe the advantages of Azure SQL Data Warehouse
  • Implement an Azure SQL Data Warehouse
  • Describe the considerations for developing an Azure SQL Data Warehouse
  • Plan for migrating to Azure SQL Data Warehouse

Module 6: Creating an ETL Solution At the end of this module you will be able to implement data flow in a SSIS package. Lessons

  • Introduction to ETL with SSIS
  • Exploring Source Data
  • Implementing Data Flow

Lab : Implementing Data Flow in an SSIS Package

  • Exploring source data
  • Transferring data by using a data row task
  • Using transformation components in a data row

After completing this module, you will be able to:

  • Describe ETL with SSIS
  • Explore Source Data
  • Implement a Data Flow

Module 7: Implementing Control Flow in an SSIS Package This module describes implementing control flow in an SSIS package. Lessons

  • Introduction to Control Flow
  • Creating Dynamic Packages
  • Using Containers
  • Managing consistency.

Lab : Implementing Control Flow in an SSIS Package

  • Using tasks and precedence in a control flow
  • Using variables and parameters
  • Using containers

Lab : Using Transactions and Checkpoints

  • Using transactions
  • Using checkpoints

After completing this module, you will be able to:

  • Describe control flow
  • Create dynamic packages
  • Use containers

Module 8: Debugging and Troubleshooting SSIS Packages This module describes how to debug and troubleshoot SSIS packages. Lessons

  • Debugging an SSIS Package
  • Logging SSIS Package Events
  • Handling Errors in an SSIS Package

Lab : Debugging and Troubleshooting an SSIS Package

  • Debugging an SSIS package
  • Logging SSIS package execution
  • Implementing an event handler
  • Handling errors in data flow

After completing this module, you will be able to:

  • Debug an SSIS package
  • Log SSIS package events
  • Handle errors in an SSIS package

Module 9: Implementing a Data Extraction Solution This module describes how to implement an SSIS solution that supports incremental DW loads and changing data. Lessons

  • Introduction to Incremental ETL
  • Extracting Modified Data
  • Loading modified data
  • Temporal Tables

Lab : Extracting Modified Data

  • Using a datetime column to incrementally extract data
  • Using change data capture
  • Using the CDC control task
  • Using change tracking

Lab : Loading a data warehouse

  • Loading data from CDC output tables
  • Using a lookup transformation to insert or update dimension data
  • Implementing a slowly changing dimension
  • Using the merge statement

After completing this module, you will be able to:

  • Describe incremental ETL
  • Extract modified data
  • Load modified data.
  • Describe temporal tables

Module 10: Enforcing Data Quality This module describes how to implement data cleansing by using Microsoft Data Quality services. Lessons

  • Introduction to Data Quality
  • Using Data Quality Services to Cleanse Data
  • Using Data Quality Services to Match Data

Lab : Cleansing Data

  • Creating a DQS knowledge base
  • Using a DQS project to cleanse data
  • Using DQS in an SSIS package

Lab : De-duplicating Data

  • Creating a matching policy
  • Using a DS project to match data

After completing this module, you will be able to:

  • Describe data quality services
  • Cleanse data using data quality services
  • Match data using data quality services
  • De-duplicate data using data quality services

Module 11: Using Master Data Services This module describes how to implement master data services to enforce data integrity at source. Lessons

  • Introduction to Master Data Services
  • Implementing a Master Data Services Model
  • Hierarchies and collections
  • Creating a Master Data Hub

Lab : Implementing Master Data Services

  • Creating a master data services model
  • Using the master data services add-in for Excel
  • Enforcing business rules
  • Loading data into a model
  • Consuming master data services data

After completing this module, you will be able to:

  • Describe the key concepts of master data services
  • Implement a master data service model
  • Manage master data
  • Create a master data hub

Module 12: Extending SQL Server Integration Services (SSIS) This module describes how to extend SSIS with custom scripts and components. Lessons

  • Using scripting in SSIS
  • Using custom components in SSIS

Lab : Using scripts

  • Using a script task

After completing this module, you will be able to:

  • Use custom components in SSIS
  • Use scripting in SSIS

Module 13: Deploying and Configuring SSIS Packages This module describes how to deploy and configure SSIS packages. Lessons

  • Overview of SSIS Deployment
  • Deploying SSIS Projects
  • Planning SSIS Package Execution

Lab : Deploying and Configuring SSIS Packages

  • Creating an SSIS catalog
  • Deploying an SSIS project
  • Creating environments for an SSIS solution
  • Running an SSIS package in SQL server management studio
  • Scheduling SSIS packages with SQL server agent

After completing this module, you will be able to:

  • Describe an SSIS deployment
  • Deploy an SSIS package
  • Plan SSIS package execution

Module 14: Consuming Data in a Data Warehouse This module describes how to debug and troubleshoot SSIS packages. Lessons

  • Introduction to Business Intelligence
  • An Introduction to Data Analysis
  • Introduction to reporting
  • Analyzing Data with Azure SQL Data Warehouse

Lab : Using a data warehouse

  • Exploring a reporting services report
  • Exploring a PowerPivot workbook
  • Exploring a power view report

After completing this module, you will be able to:

  • Describe at a high level business intelligence
  • Show an understanding of reporting
  • Show an understanding of data analysis
  • Analyze data with Azure SQL data warehouse
TENHO INTERESSE

Cursos Relacionados

Curso Implementando um Data Warehouse SQL

32 horas

Curso MySQL para Iniciantes Administração de Banco de Dados

32 horas

Curso Microsoft SQL Desenvolvimentos de SQL Data Models

24 Horas

Curso SQL Microsoft Database Fundamentals

16 horas

Curso Microsoft SQL 20761 Consultando Dados com o Transact-SQL

32 Horas

Curso Microsoft SQL 20762 Developing SQL Databases

40 Horas

Curso Microsoft SQL Administração SQL Database Infrastructure

32 horas

Curso Microsoft SQL Provisionamento de SQL Databases

32 horas

Curso Microsoft SQL Implementando um SQL Data Warehouse

32 horas

Curso Microsoft SQL Developing SQL Data Models

24 horas