Curso Microsoft SQL Developing SQL Data Models
24 horasVisão Geral
O foco deste Curso Microsoft SQL Developing SQL Data Models, é a criação de soluções gerenciadas de BI empresarial. Ele descreve como implementar modelos de dados multidimensionais e tabulares e como criar cubos, dimensões, medidas e grupos de medidas. Este curso ajuda você a se preparar para o Exame 70-768.
Objetivo
Após concluir este Curso Microsoft SQL Developing SQL Data Models, os alunos serão capazes de:
- Descrever os componentes, a arquitetura e a natureza de uma solução de BI
- Criar um banco de dados multidimensional com Analysis Services
- Implementar dimensões em um cubo
- Implementar medidas e grupos de medidas em um cubo
- Usar sintaxe MDX
- Personalizar um cubo
- Implementar um banco de dados tabular
- Use DAX para consultar um modelo tabular
- Use mineração de dados para análise preditiva
Publico Alvo
O público principal deste curso são profissionais de banco de dados que precisam cumprir a função de Desenvolvedor de BI para criar soluções de BI corporativas. As responsabilidades principais incluirão:
- Implementando bancos de dados multidimensionais usando o SQL Server Analysis Services
- Criando modelos de dados semânticos tabulares para análise usando o SQL Server Analysis Services
Pre-Requisitos
Antes de frequentar este curso, os alunos devem ter:
- Experiência de consulta de dados usando Transact-SQL
Conteúdo Programatico
Module 1: Introduction to Business Intelligence and Data Modeling This module introduces key BI concepts and the Microsoft BI product suite. Lessons
- Introduction to Business Intelligence
- The Microsoft business intelligence platform
Lab : Exploring a BI Solution
- Exploring a Data Warehouse
- Exploring a data model
After completing this module, students will be able to:
- Describe BI scenarios, trends, and project roles.
- Describe the products that make up the Microsoft BI platform.
Module 2: Creating Multidimensional Databases This module describes how to create multidimensional databases using SQL Server Analysis Services. Lessons
- Introduction to Multidimensional Analysis
- Data Sources and Data Source Views
- Cubes
- Overview of Cube Security
- Configure SSAS
- Monitoring SSAS
Lab : Creating a multidimensional database
- Creating a Data Source
- Creating and Configuring a data Source View
- Creating and Configuring a Cube
- Adding a Dimension to a Cube
After completing this module, you will be able to:
- Describe considerations for a multidimensional database.
- Create data sources and data source views.
- Create a cube
- Implement security in a multidimensional database.
- Configure SSAS to meet requirements including memory limits, NUMA and disk layout.
- Monitor SSAS performance.
Module 3: Working with Cubes and Dimensions This module describes how to implement dimensions in a cube. Lessons
- Configuring Dimensions
- Defining Attribute Hierarchies
- Implementing Sorting and Grouping Attributes
- Slowly Changing Dimensions
Lab : Working with Cubes and Dimensions
- Configuring Dimensions
- Defining Relationships and Hierarchies
- Sorting and Grouping Dimension Attributes
After completing this module, you will be able to:
- Configure dimensions.
- Define attribute hierarchies.
- Implement sorting and grouping for attributes.
- Implement slowly changing dimensions.
Module 4: Working with Measures and Measure Groups This module describes how to implement measures and measure groups in a cube. Lessons
- Working with Measures
- Working with Measure Groups
Lab : Configuring Measures and Measure Groups
- Configuring Measures
- Defining Regular Relationships
- Configuring Measure Group Storage
After completing this module, you will be able to:
- Configure measures.
- Configure measure groups.
Module 5: Introduction to MDX This module describes the MDX syntax and how to use MDX. Lessons
- MDX fundamentals
- Adding Calculations to a Cube
- Using MDX to Query a Cube
Lab : Using MDX
- Querying a cube using MDX
- Adding a Calculated Member
After completing this module, you will be able to:
- Use basic MDX functions.
- Use MDX to add calculations to a cube.
- Use MDX to query a cube.
Module 6: Customizing Cube Functionality This module describes how to customize a cube. Lessons
- Implementing Key Performance Indicators
- Implementing Actions
- Implementing Perspectives
- Implementing Translations
Lab : Customizing a Cube
- Implementing an action
- Implementing a perspective
- Implementing a translation
After completing this module, you will be able to:
- Implement KPIs in a Multidimensional database
- Implement Actions in a Multidimensional database
- Implement perspectives in a Multidimensional database
- Implement translations in a Multidimensional database
Module 7: Implementing a Tabular Data Model by Using Analysis Services This module describes how to implement a tabular data model in Power Pivot. Lessons
- Introduction to Tabular Data Models
- Creating a Tabular Data Model
- Using an Analysis Services Tabular Data Model in an Enterprise BI Solution
Lab : Working with an Analysis Services Tabular Data Model
- Creating an Analysis Services Tabular Data Model
- Configure Relationships and Attributes
- Configuring Data Model for an Enterprise BI Solution.
After completing this module, students will be able to:
- Describe tabular data models
- Describe how to create a tabular data model
- Use an Analysis Services Tabular Model in an enterprise BI solution
Module 8: Introduction to Data Analysis Expression (DAX) This module describes how to use DAX to create measures and calculated columns in a tabular data model. Lessons
- DAX Fundamentals
- Using DAX to Create Calculated Columns and Measures in a Tabular Data Model
Lab : Creating Calculated Columns and Measures by using DAX
- Creating Calculated Columns
- Creating Measures
- Creating a KPI
- Creating a Parent – Child Hierarchy
After completing this module, students will be able to:
- Describe the key features of DAX
- Create calculated columns and measures by using DAX
Module 9: Performing Predictive Analysis with Data Mining This module describes how to use data mining for predictive analysis. Lessons
- Overview of Data Mining
- Creating a Custom Data Mining Solution
- Validating a Data Mining Model
- Connecting to and Consuming a Data-Mining Model
- Using the Data Mining add-in for Excel
Lab : Using Data Mining
- Creating a Data Mining Structure and Model
- Exploring Data Mining Models
- Validating Data Mining Models
- Consuming a Data Mining Model
- Using the Excel Data Mining add-in
After completing this module, students will be able to:
- Describe considerations for data mining
- Create a data mining model
- Validate a data mining model
- Connect to a data-mining model
- Use the data mining add-in for Excel