Visão Geral
Este curso aborda os fundamentos e aplicações da Manutenção Preditiva com Inteligência Artificial, capacitando o aluno a monitorar ativos industriais, prever falhas e otimizar a manutenção por meio de dados, sensores e modelos inteligentes.
Conteúdo Programatico
Module 1 – Introduction to Predictive Maintenance
- Maintenance strategies overview
- Predictive vs preventive maintenance
- Industrial failure patterns
- Business impact of predictive maintenance
Module 2 – Industrial Assets and Condition Monitoring
- Critical assets identification
- Sensors and monitoring techniques
- Vibration, temperature and acoustic data
- Data collection in industrial environments
Module 3 – Data for Predictive Maintenance
- Time-series industrial data
- Data preprocessing and cleaning
- Feature extraction
Module 4 – Artificial Intelligence Fundamentals
- Machine learning concepts
- Supervised and unsupervised learning
- Anomaly detection
- Model evaluation metrics
Module 5 – AI Models for Predictive Maintenance
- Regression and classification models
- Remaining Useful Life (RUL) estimation
- Failure prediction models
- Model training and validation
Module 6 – Integration with Industrial Systems
- IoT platforms and data pipelines
- Integration with CMMS and ERP
- Real-time monitoring dashboards
- Alerts and decision support
Module 7 – Deployment and Operationalization
- Model deployment strategies
- Edge vs cloud processing
- Model monitoring and retraining
- Scalability and performance
Module 8 – Security, Governance and Future Trends
- Industrial data security
- Reliability and safety considerations
- Ethical use of AI
- Future of AI-driven maintenance