Visão Geral
Curso Machine Learning Specialization, apresenta o campo emocionante e de alta demanda do aprendizado de máquina. Por meio de uma série de exercícios práticos, você ganhará experiência aplicada nas principais áreas de aprendizado de máquina, incluindo previsão, classificação, clustering, visão computacional e aprendizado profundo. Você aprenderá a analisar dados e construir aplicativos inteligentes que podem fazer previsões a partir dos dados.
Este Curso Machine Learning Specialization, construirá sua base em Python primeiro, depois seguirá pelo aprendizado de máquina clássico usando Scikit Learn, seguido pelo aprendizado profundo usando a estrutura Tensorflow 2.x.
Conteúdo Programatico
Python Fundamental
Get Started on Python
- Overview of Python
- Set Python
- Code Your First Python Script
Data Types
- Number
- String
- List
- Tuple
- Dictionary
- Set
Operators
- Arithmetic Operators
- Compound Operators
- Comparison Operators
- Membership Operators
- Logical Operators
Control Structure, Loop and Comprehension
- Conditional
- Loop
- Iterating Over Multiple Sequences
- Comprehension
Function
- Function Syntax
- Return Values
- Default Arguments
- Variable Arguments
- Lambda, Map, Filter
Modules & Packages
- Import Modules and Packages
- Python Standard Packages
- Third Party Packages
Data Analytics and Visualization with Python
Data Preparation
- Data Analytics with Pandas
- Pandas DataFrame and Series
- Import and Export Data
- Filter and Slice Data
- Clean Data
Data Transformation
- Join Data
- Transform Data
- Aggregate Data
Data Visualization
- Data Visualization with Matplotlib and Seaborn
- Visualize Statistical Relationships with Scatter Plot
- Visualize Categorical Data with Bar Plot
- Visualize Correlation with Pair Plot and Heatmap
- Visualize Linear Relationships with Regression
Data Analysis
- Statistical Data Analysis
- Time Series Analysis
Advanced Data Analytics
- Data Piping
- Groupby and Apply Custom Functions
- Linear Regression
Machine Learning with Scikit Learn
Overview of Machine Learning and Scikit Learn
- Introduction to Machine Learning
- Supervised vs Unsupervised Learnings
- Machine Learning Applications and Case Studies
- What is Scikit Learn
- Installing Scikit-Learn
Classification
- What is Classification
- Classification Algorithms
- Classification Workflow
- Confusion Matrix
- Binary Classification Metrics
- ROC and AUC
Regression
- What is Regression?
- Regression Algorithms
- Regression Workflow
- Regression Metrics
- Overfitting and Regularizations
Clustering
- What is Clustering
- K-Means Clustering
- Silhouette Analysis
- Dendrogram and Hierarchical Clustering
Topic 3.5 Principal Component Analysis
- Curse of Dimensionality Issue
- What is Principal Component Analysis (PCA)
- Feature Reduction with PCA
Basic Neural Network with Tensorflow
Introduction to Deep Learning
- Machine Learning vs Deep Learning
- Deep Learning Methodology
- Overview of Tensorflow Keras
- Install and Run Tensorflow Keras
- Basic Tensorflow Keras Operations
Neural Network for Regression
- What is Neural Network (NN)?
- Loss Function and Optimizer
- Build a Neural Network Model for Regression
Neural Network for Classification
- One Hot Encoding and SoftMax
- Cross Entropy Loss Function
- Build a Neural Network Model for Classification
Advanced Neural Networks with Tensorflow
Convolutional Neural Network (CNN)
- Introduction to Convolutional Neural Network?
- ImageDataGenerator
- Image Classification Model with CNN
- Data Augmentation and Dropout
Transfer Learning
- Introduction to Transfer Learning
- Applications of Pre-Trained Models
- Fine Tuning Pre-Trained Models
Recurrent Neural Network (RNN)
- Introduction to Recurrent Neural Network (RNN)
- LSTM and GRU
- Build a RNN Model for Time Series Forecasting
- Build a RNN Model for Sentiment Analysis