Curso Machine Learning in TensorFlow Keras Fundamentals

  • RPA | IA | AGI | ASI | ANI | IoT | PYTHON | DEEP LEARNING

Curso Machine Learning in TensorFlow Keras Fundamentals

16 horas
Visão Geral

O Curso Machine Learning in TensorFlow Keras Fundamentals, foi desenvolvido para usuários que desejam mergulhar nos domínios da Inteligência Artificial. Naturalmente vem como um seguidor do curso Ciência de Dados Básica em Python.

Materiais
Inglês/Português/Lab Prático
Conteúdo Programatico

Introduction

  1. What is ML?
  2. Where can I find it in real life?
  3. Why now?
  4. What are the three main categories of ML?
  5. Supervised learning
  6. Unsupervised learning
  7. Reinforcement learning (demo)
  8. ML pipeline

Machine Learning with sci-kit

  1. ML pipeline review
  2. Scikit Python Library
  3. Data representation
  4. Feature matrix
  5. Target array
  6. Iris dataset example
  7. Estimator API
  8. Linear Regression
  9. Simple Linear Regression
  10. Model Evaluation
  11. Polynomial Regression
  12. Selecting the best model
  13. The bias-variance trade-off
  14. Logistic Regression
  15. Who survives the Titanic?
  16. Naive Bayes
  17. Gaussian Naive Bayes
  18. Multinomial Naive Bayes
  19. Categorical Naive Bayes
  20. k Nearest Neighbours
  21. k-Means Clustering
  22. Dimensionality reduction
  23. Principal Components Analysis (PCA)
  24. Singular Value Decomposition (SVD)
  25. Decision Trees
  26. Random Forests

Hands-on Lab:

  • Playing around with different values affecting the bias and the variance, calculating precision, recall, F1 and F2-scores, comparing different models on the training and testing accuracies
  • Doing a little bit of data preprocessing, analyzing the difference between categorical and numerical data, plotting some relevant statistical values and visually inspecting the correlation between features

Neural Networks in Tensorflow/Keras

  1. Artificial Neural Networks (ANNs)
  2. Neurons
  3. Layers
  4. Activation Functions
  5. More vocabulary
  6. Popular Frameworks
  7. Keras
  8. Linear Regression
  9. Defining Models in Keras
  10. Training and predicting
  11. Fashion MNIST example

Hands-on Lab:

  1. Creating our first custom neural network model
  2. Choosing the number of layers and the number of neurons per layer
  3. Tweaking the learning rate
  4. Training the neural network on real world data

Convolutional Neural Networks (peek)

  1. Motivation behind CNNs
  2. CNN Building blocks
  3. Convolution Layers
  4. Pooling Layers
  5. CNNs in Keras
  6. Data Augmentation
  7. Architectures

NLP using Deep Learning

  1. Spam detector
  2. Sentiment analyzer
  3. Autocomplete

Module 6: Reinforcement Learning

  1. Frozen Lake demo
  2. Flappy Bird demo

Recommender Systems

  1. Data preparation
  2. Cosine distance
  3. SVD for recommender systems
  4. Autoencoder demo
TENHO INTERESSE

Cursos Relacionados

Curso AI ML Toolkits with Kubeflow Foundation

24 horas

Curso Container Management with Docker

24 Horas

Curso Machine Learning Python & R In Data Science

32 Horas

Curso Docker for Developers and System Administrators

16 horas

Curso artificial inteligence AI for Everyone Foundation

16 horas

Curso IA Inteligência Artificial e Código Aberto Foundation

16 horas

Curso Artificial Intelligence with Azure

24 Horas

Curso RPA Robotic Process Automation Industria 4.0

32 horas