Objetivo
Ao participar do Curso Keras Advanced & Sequential Data Modeling, os participantes aprenderão:
- Ajuste de hiperparâmetros com Keras e Auto-Keras
- Retornos de chamada
- API funcional para construir modelos complexos
- Backend Keras para invocar operações Tensorflow
- Auto-Keras
- Recapitulação de RNN e LSTM
- Convolução 1D
- Modelo de sequência de sequência 2
- Mecanismo de Atenção
Publico Alvo
- Data Scientists
- Data Analysts
- Engineers
Pre-Requisitos
- Python básico
- Keras Básico
- Aprendizado de máquina
Materiais
Portugues/Inglês + Lab Pratico
Conteúdo Programatico
Recap on Keras Basic
- Sequential Model
- Feedforward Neural Network (NN)
- Convolutional Neural Network (CNN)
- Recurrent Neural Network (RNN)
Functional API
- What is Functional API
- Code Sequential Models with Functional API
- Fine Tune Transfer Learning with Functional API
- Implement GAN with Functional API
- Create Multi Input and Output Model
Callbacks
- Keras Callbacks
- ModelCheckPoint Callback
- Tensorboard Callback
Data Generator
- Image Class Generator
- Fit Generator
- Flow from Directory Generator
- Custom Data Generator
Keras Backend
- What is Keras Backend
- Keras Backend Commands
- Create Custom Loss Function
Word Embedding
- One Hot Encoding of Words
- Word Embedding
- Pre-Trained Word Embedding
RNN and LSTM
- Recurrent Neural Network (RNN)
- Long Short Term Memory (LSTM) and GRU
- Stacked RNN
- Bidirectional RNN
- Case Studies on Time Series Prediction with LSTM
1D Convolution
- 1D Convolution on Sequential Data
- Combining 1D Convolution and RNN
Sequence To Sequence Model
- What is Seq2Seq Model
- Attention Mechanism
TENHO INTERESSE