Visão Geral
Curso Kafka and OpenSearch Performance Tuning on Kubernetes. Este curso avançado ensina como otimizar performance, latência, throughput, confiabilidade e eficiência de recursos para clusters Apache Kafka e OpenSearch executando em ambientes Kubernetes.
O treinamento é focado em ajustes finos (tuning), estratégias de escalabilidade, configurações avançadas, análise de gargalos, tuning de storage, otimização de ingestão, particionamento, indexação e troubleshooting de performance.
Ao final, o aluno terá domínio sobre como ajustar Kafka e OpenSearch para ambientes de alta demanda, garantindo estabilidade, alto throughput e baixa latência, mesmo em pipelines complexos e distribuídos.
Objetivo
Após realizar este curso Kafka and OpenSearch Performance Tuning on Kubernetes, você será capaz de:
- Otimizar performance do Kafka e OpenSearch em ambientes Kubernetes
- Ajustar configurações de storage, rede, CPU e memória para maximizar throughput
- Identificar e resolver gargalos críticos (bottlenecks)
- Ajustar partições, replicas, índices e mappings
- Aumentar resiliência e estabilidade dos clusters
- Garantir baixa latência e alto volume de ingestão
- Implementar estratégias de scaling horizontal e vertical
- Configurar tuning avançado dos brokers Kafka
- Ajustar caches, thread pools e buffers
- Aplicar boas práticas de tuning para produção
Publico Alvo
- Engenheiros DevOps avançados
- Engenheiros de dados
- Administradores de Kubernetes
- Arquitetos de software
- SREs (Site Reliability Engineers)
- Profissionais que operam Kafka e OpenSearch em produção
- Especialistas em pipelines de dados e event streaming
Pre-Requisitos
- Conhecimentos sólidos de Kubernetes
- Experiência prévia com Kafka e OpenSearch
- Conhecimentos de storage, rede e infraestrutura
- Experiência com Helm, YAML e CI/CD
- Noções avançadas de observabilidade (métricas, logs)
Materiais
Inglês/Português + Exercícios + Lab Pratico
Conteúdo Programatico
Module 1 — Foundations of Performance Tuning
- Understanding throughput vs latency
- CPU, memory, I/O, and storage fundamentals
- Kubernetes resource management: limits, requests, QoS
- Identifying common bottlenecks in Kafka and OpenSearch
Module 2 — Kubernetes Tuning for Data Workloads
- Optimizing nodes for stateful workloads
- Storage classes and performance comparison
- Tuning PersistentVolumes (local-path, SSD, NVMe, network storage)
- Configuring affinity, anti-affinity, and pod distribution
- Network tuning and bandwidth considerations
Module 3 — Kafka Performance Tuning
- Broker-level tuning
- Log segment sizes, retention, cleanup policies
- Page cache optimization
- Tuning producer throughput (batch.size, linger.ms, compression)
- Tuning consumer performance (fetch sizes, max records)
- Partition strategy for performance
- Replication tuning (replica fetchers, ISR management)
- Kafka Controller tuning
- Impact of message size and record format
Module 4 — Kafka on Kubernetes Optimization
- Kafka Operator vs Helm tuning strategies
- Storage optimization for Kafka logs
- Broker Pod resource optimization
- Scaling brokers horizontally
- Reducing cross-node traffic
- Avoiding partition hotspots
- NodeSelector, Taints, and Tolerations for Kafka
Module 5 — OpenSearch Performance Tuning
- Indexing vs searching performance trade-offs
- Tuning cluster roles and node types
- JVM tuning for OpenSearch (heap sizing, GC optimization)
- Thread pools and queue tuning
- Shard and replica strategy
- Refresh interval and index buffer settings
- Force merge, rollover, and lifecycle policies
- Mapping optimization for high-velocity ingestion
Module 6 — OpenSearch on Kubernetes Optimization
- Disk throughput considerations
- Dedicated nodes for ingestion, search, coordination
- Scaling horizontally and vertically
- Handling shard imbalances
- Reducing cluster state bottlenecks
- Optimizing OpenSearch Dashboards performance
Module 7 — Performance Testing and Benchmarking
- Benchmark tools:
k6, JMeter, kafka-producer-perf-test, opensearch-benchmark
- Testing ingestion throughput
- Measuring search latency
- Stress tests and chaos scenarios
- Simulating high-throughput pipelines
Module 8 — Observability for Performance Tuning
- Key Kafka performance metrics to monitor
- Key OpenSearch performance metrics to monitor
- Grafana dashboards for performance visibility
- Detecting anomalies in ingestion rates
- Lag, partition imbalance, GC spikes, and shard hotspots
- Using Kafdrop for real-time performance debugging
Module 9 — Troubleshooting Performance Issues
- Slow producer/consumer scenarios
- Troubleshooting low throughput in OpenSearch
- Fixing slow searches and high latency
- Diagnosing garbage collection issues
- Network delays, DNS resolution problems, and cross-zone issues
- Storage saturation and I/O contention
- Identifying misconfigurations using metrics and logs
Module 10 — Hands-On Labs
- Lab 1: Benchmarking Kafka on Kubernetes
- Lab 2: Benchmarking OpenSearch indexing and search
- Lab 3: Broker and producer tuning workshop
- Lab 4: OpenSearch JVM and GC tuning
- Lab 5: Shard allocation tuning and balancing
- Lab 6: Tuning network and node resources on Kubernetes
- Lab 7: Full pipeline performance optimization (Kafka → OpenSearch)
- Lab 8: Diagnosing and fixing real-world bottlenecks
TENHO INTERESSE