Curso IT & ML With Python
24 horasVisão Geral
Curso IT & ML With Python, A Inteligência Artificial (IA) é um ramo da Ciência que lida com ajudar as máquinas a encontrar soluções para problemas complexos de uma forma mais humana. Este curso ajuda a entender a definição de IA ("geral" e "estreita"), a relação entre IA e máquina, supervisão e não supervisionada, aprendizado por reforço. Após este programa, os participantes poderão iniciar AI & ML com programação em Python
Materiais
Inglês + Exercícios + Lab PraticoConteúdo Programatico
Module-1
- Introduction – Data Science (AI/ML)?
- Data Extraction
- Data Wrangling
- Data Exploration
- Data Visualisation
- Statistics
Module-2 Python
- Overview of Python
- Creating “Hello World” code
- Variables
- Python files I/O Functions
- Numbers
- Strings and related operations
- Tuples and related operations
- Lists and related operations
- Dictionaries and related operations
- Tuple – properties, related operations, compared with a list
- List – properties, related operations
- Dictionary – properties, related operations
Module-3
- • NumPy – arrays
- • Operations on arrays
- • Indexing slicing and iterating
- • Pandas – data structures & index operations
- • Reading and Writing data from Excel/CSV formats into Pandas
- • Matplotlib library
Module-4
- Python Revision (numpy, Pandas, scikit learn, matplotlib)
- What is Machine Learning?
- Machine Learning Use-Cases
- Machine Learning Process Flow
- Machine Learning Categories
- Linear regression
- What are Classification and its use cases?
Supervised Learning
- What is Decision Tree?
- Confusion Matrix
- What is Random Forest?
- What is Naïve Bayes?
- How Naïve Bayes works?
- Implementing Naïve Bayes Classifier
- What is Support Vector Machine?
Module-5
Unsupervised Learning
- What is Clustering & its Use Cases?
- What is K-means Clustering?
- How does K-means algorithm work?
- What is Hierarchical Clustering?
- How Hierarchical Clustering works? Reinforcement Learning
- What is Reinforcement Learning
- Why Reinforcement Learning
- Elements of Reinforcement Learning
- Exploration vs Exploitation dilemma
- Market Basket Analysis
Module-6
- Introduction to Dimensionality
- Why Dimensionality Reduction
- PCA (Principal Component Analysis)
- Factor Analysis Time Series Analysis (TSA)
• What is Time Series Analysis?
- Importance of TSA
- Components of TSA
- White Noise
- AR model (Auto regression )
- MA model (moving-average )
- ARMA model (Auto regressive moving average)
- ARIMA model ( Auto Regressive Integrated Moving Average )
- Stationarity
- Data Visualization
Hands on for all the modules:
- Creating “Hello World” code
- Linear Regression
- Logistic regression
- Decision tree
- Principal Component Analysis (PCA)
- Factor Analysis
- Time Series Analysis/ Forecasting
- Market Basket Analysis
- Data Visualization