Visão Geral
Curso Introducao as Redes Neurais e Deep Learning. Este curso apresenta os fundamentos teóricos e práticos das redes neurais artificiais e do Deep Learning, abordando desde conceitos matemáticos essenciais até a compreensão de arquiteturas modernas utilizadas em aplicações reais. O foco é fornecer uma base sólida para quem deseja atuar ou evoluir nas áreas de Inteligência Artificial, Ciência de Dados e Engenharia de Machine Learning.
Conteúdo Programatico
Module 1: Fundamentals of Artificial Intelligence and Neural Networks
- History and evolution of artificial intelligence
- Biological inspiration of neural networks
- Artificial neuron model
- Activation functions
Module 2: Mathematical Foundations for Neural Networks
- Linear algebra concepts for neural networks
- Probability and statistics essentials
- Loss functions and optimization concepts
- Gradient descent
Module 3: Introduction to Deep Learning
- What is deep learning
- Shallow vs deep networks
- Overfitting and underfitting
- Bias and variance tradeoff
Module 4: Neural Network Architectures
- Feedforward neural networks
- Convolutional neural networks
- Recurrent neural networks
- Overview of transformers
Module 5: Training Neural Networks
- Backpropagation algorithm
- Weight initialization techniques
- Regularization methods
- Model evaluation metrics
Module 6: Practical Implementation
- Building a neural network from scratch
- Implementing models with deep learning frameworks
- Dataset preparation and preprocessing
- Model training and validation
Module 7: Applications and Future Trends
- Computer vision applications
- Natural language processing applications
- Recommendation systems
- Future of deep learning and neural networks