Visão Geral
Este curso apresenta os fundamentos da computação híbrida, integrando computação clássica e quântica em arquiteturas, algoritmos e fluxos de trabalho combinados. O foco está em compreender como sistemas clássicos e quânticos colaboram para resolver problemas complexos, respeitando as limitações atuais do hardware quântico.
Conteúdo Programatico
Module 1 – Classical, Quantum and Hybrid Computing
- Classical computing limitations
- Quantum computing overview
- Why hybrid computing matters
- Near-term quantum reality
Module 2 – Hybrid Computing Architecture
- Classical control and quantum execution
- Hybrid system components
- Data flow and orchestration
- Cloud-based hybrid platforms
Module 3 – Hybrid Algorithms Fundamentals
- Variational algorithms concept
- Classical optimization loops
- Quantum subroutines
- Performance considerations
Module 4 – Variational Quantum Algorithms (VQA)
- VQA principles
- Parameterized quantum circuits
- Cost functions
- Optimization strategies
Module 5 – Hybrid Use Cases
- Optimization problems
- Machine learning hybrid models
- Simulation and modeling
- Industry-driven scenarios
Module 6 – Tools and Frameworks
- Hybrid programming tools overview
- Qiskit hybrid workflows
- Integration with classical languages
- Simulation vs real hardware
Module 7 – Challenges and Limitations
- Noise and decoherence
- Scalability issues
- Resource constraints
- Cost and execution trade-offs
Module 8 – Future of Hybrid Computing
- Roadmap of hybrid systems
- Hardware evolution impact
- Hybrid-first strategies
- Preparing for fault-tolerant quantum computing