Visão Geral
O curso InfluxDB Data Modeling and Schema Design é focado no planejamento e na modelagem eficiente de dados de séries temporais no InfluxDB. O treinamento aborda conceitos essenciais de schema design, organização de métricas, uso adequado de measurements, tags e fields, além de estratégias para controle de cardinalidade, retenção e performance. O participante aprenderá a projetar modelos de dados escaláveis e sustentáveis para cenários de monitoramento, observabilidade e IoT.
Conteúdo Programatico
Module 1: Time Series Data Modeling Fundamentals
- Time Series Data Characteristics
- Why Schema Design Matters
- Common Time Series Modeling Mistakes
- Schema Evolution Challenges
Module 2: InfluxDB Data Model Overview
- Measurements Explained
- Tags and Fields Deep Dive
- Series and Cardinality Concepts
- Timestamps and Precision
Module 3: Designing Measurements and Naming Conventions
- Measurement Design Principles
- Naming Standards and Patterns
- Metric Granularity Considerations
- Multi-Metric vs Single-Metric Design
Module 4: Tags, Fields, and Cardinality Control
- Tag Selection Strategy
- Field Data Types
- Cardinality Impact on Performance
- Strategies to Reduce Cardinality
Module 5: Buckets, Retention, and Data Lifecycle
- Bucket Design Strategies
- Retention Policies Best Practices
- Downsampling and Rollups
- Data Expiration and Archiving
Module 6: Schema Design for Monitoring Use Cases
- Infrastructure Metrics Modeling
- Application Metrics Schema
- Network and Service Metrics
- Multi-Environment Data Design
Module 7: Schema Design for Query Performance
- Query Patterns and Schema Alignment
- Optimizing Tags for Filtering
- Aggregation-Friendly Schemas
- Avoiding Anti-Patterns
Module 8: Schema Design Workshops and Labs
- Schema Review Exercises
- Refactoring Existing Schemas
- Real-World Modeling Scenarios
- Hands-On Labs and Best Practices