Curso High-Performance Real-Time Distributed Systems RabbitMQ Kafka Redis

  • DevOps | CI | CD | Kubernetes | Web3

Curso High-Performance Real-Time Distributed Systems RabbitMQ Kafka Redis

32 horas Curso Pratico
Visão Geral

Este Curso High-Performance Real-Time Distributed Systems RabbitMQ + Kafka + Redis e abrangente oferece uma compreensão completa sobre como projetar, implantar e gerenciar sistemas distribuídos em tempo real e de alta performance, utilizando RabbitMQ, Apache Kafka e Redis.

Os participantes aprenderão a integrar essas tecnologias para criar arquiteturas orientadas a eventos, com comunicação de baixa latência, alta disponibilidade e tolerância a falhas.

Ao final do treinamento, os alunos estarão aptos a construir aplicações escaláveis, resilientes e orientadas a mensagens, capazes de processar milhões de eventos por segundo com eficiência e confiabilidade.

Objetivo

Após concluir o Curso High-Performance Real-Time Distributed Systems: RabbitMQ + Kafka + Redis, você será capaz de:

  • Compreender as arquiteturas e os modelos de comunicação de RabbitMQ, Kafka e Redis
  • Implementar pipelines de mensagens e plataformas de streaming em tempo real
  • Integrar cache e mensageria para reduzir latência e aumentar throughput
  • Criar arquiteturas híbridas e distribuídas para processamento de eventos
  • Monitorar, otimizar e proteger infraestruturas de mensageria distribuída
Publico Alvo

Este curso é indicado para:

  • Desenvolvedores Backend e Engenheiros de Software
  • Engenheiros DevOps e SRE (Site Reliability Engineers)
  • Arquitetos de Sistemas e Especialistas em Integração
  • Engenheiros de Dados e Profissionais de Streaming
  • Qualquer profissional que deseje projetar sistemas distribuídos e em tempo real
Pre-Requisitos

Os participantes devem possuir:

  • Conhecimentos básicos de Linux e redes
  • Noções sobre containers (Docker e Kubernetes)
  • Experiência prévia em alguma linguagem de programação (Python, Java ou Node.js)
  • Conhecimentos sobre APIs, JSON e microserviços
Materiais
Inglês/Português + Exercícios + Lab Pratico
Conteúdo Programatico

Module 1: Fundamentals of Distributed and Real-Time Systems

  1. Principles of distributed computing
  2. Real-time processing and data flow patterns
  3. Event-driven vs. message-driven systems
  4. Scalability, latency, and consistency challenges
  5. Use cases in modern architectures

Module 2: Messaging Systems Overview

  1. Role of message brokers in distributed systems
  2. Communication patterns: queue, publish/subscribe, fanout, topic-based
  3. Message durability, reliability, and delivery guarantees
  4. Comparison between RabbitMQ, Kafka, and Redis

Module 3: RabbitMQ Deep Dive

  1. AMQP protocol architecture
  2. Exchanges, queues, bindings, and routing keys
  3. Message acknowledgments and durability
  4. Clustering, high availability, and mirrored queues
  5. Management, metrics, and troubleshooting

Module 4: Apache Kafka Deep Dive

  1. Kafka components: brokers, topics, partitions, consumers
  2. Message ordering, replication, and offset management
  3. Kafka Connect, Streams API, and Schema Registry
  4. Designing large-scale data pipelines
  5. Fault tolerance and performance tuning

Module 5: Redis for Messaging and Real-Time Data

  1. Redis architecture and in-memory operations
  2. Data structures and use cases for caching and queues
  3. Redis Pub/Sub, Streams, and Redis Queue (RQ)
  4. Redis clustering, replication, and high availability
  5. Performance tuning and persistence (RDB, AOF)

Module 6: Integration Architecture — RabbitMQ + Kafka + Redis

  1. When to use each technology
  2. Bridging RabbitMQ and Kafka for hybrid data pipelines
  3. Using Redis as cache, message buffer, and temporary queue
  4. Event-driven integration patterns and middleware design
  5. Example architectures for microservices and analytics systems

Module 7: Real-Time Data Processing and Event Streaming

  1. Event sourcing and CQRS patterns
  2. Stream processing fundamentals
  3. Designing a real-time analytics pipeline
  4. Handling high message volumes
  5. Data transformation, filtering, and routing

Module 8: Deployment and Scalability

  1. Deploying RabbitMQ, Kafka, and Redis with Docker and Kubernetes
  2. Scaling strategies and partitioning data
  3. Cluster configuration best practices
  4. Resource optimization and throughput testing
  5. Backup and disaster recovery

Module 9: Monitoring, Observability, and Security

  1. Metrics and monitoring with Prometheus and Grafana
  2. Logs, tracing, and alerting
  3. Authentication, encryption, and TLS
  4. Access control and user management
  5. Performance analysis and bottleneck detection

Module 10: Capstone Project — Real-Time Distributed System Implementation

  1. Designing an end-to-end architecture combining RabbitMQ, Kafka, and Redis
  2. Implementing data ingestion, event streaming, and caching
  3. Integration with APIs and microservices
  4. Testing fault tolerance and failover
  5. Deployment demonstration and presentation of results
TENHO INTERESSE

Cursos Relacionados

Curso Ansible Red Hat Basics Automation Technical Foundation

16 horas

Curso Terraform Deploying to Oracle Cloud Infrastructure

24 Horas

Curso Ansible Linux Automation with Ansible

24 horas

Ansible Overview of Ansible architecture

16h

Advanced Automation: Ansible Best Practices

32h