Visão Geral
O curso Grokking the Coding Interview Patterns in Python foi desenvolvido para preparar profissionais e estudantes para entrevistas técnicas de alto nível com foco na linguagem Python. O curso apresenta e explora de forma prática os principais padrões de resolução de problemas utilizados em entrevistas de empresas globais de tecnologia.
Os alunos aprenderão a aplicar padrões eficientes, a estruturar soluções claras e escaláveis e a comunicar seu raciocínio de forma adequada para impressionar recrutadores e equipes técnicas durante o processo seletivo.
Conteúdo Programatico
Module 1: Introduction to Python Interview Patterns
- Understanding coding interview formats
- Time and space complexity refresher
- Python essentials: lists, dictionaries, sets, comprehensions
- Effective problem-solving strategies
Module 2: Sliding Window Pattern
- Fixed-size window
- Variable-size window
- Real problems: Minimum Window Substring, Longest Substring Without Repeating Characters
- Common mistakes and Pythonic optimizations
Module 3: Two Pointers Pattern
- Techniques for sorted arrays
- Pair-sum problems
- Reversing arrays and removing duplicates
- Memory-efficient approaches
Module 4: Fast and Slow Pointers Pattern
- Detecting cycles in linked lists
- Finding the middle node
- Using Floyd’s cycle detection algorithm
Module 5: Merge Intervals Pattern
- Sorting intervals
- Merging overlapping intervals
- Interval scheduling
- Optimization techniques using Python’s sort
Module 6: Cyclic Sort Pattern
- In-place array manipulation
- Finding missing or duplicate numbers
- Efficient index-based logic
Module 7: In-Place Reversal of Linked List Pattern
- Linked list reversal
- Sublist reversal problems
- Using pointers and iterative logic in Python
Module 8: Tree BFS Pattern
- Level-order traversal
- Shortest-path problems
- Queue-based approach using
collections.deque
Module 9: Tree DFS Pattern
- Recursive DFS and iterative DFS
- Pre-order, in-order, post-order traversal
- Solving combinatorial search problems
Module 10: Topological Sort Pattern
- DAG concepts
- Kahn’s algorithm
- Dependency ordering
- Python graph representation patterns
Module 11: Binary Search Pattern
- Classic binary search
- Searching rotated arrays
- Optimizing edge-case handling
Module 12: Dynamic Programming Pattern
- Identifying overlapping subproblems
- Memoization (
lru_cache) and tabulation
- Solving Fibonacci, Knapsack, LIS, Coin Change
Module 13: Backtracking Pattern
- Exploring search spaces
- Generating permutations, combinations, subsets
- Solving N-Queens and Sudoku
Module 14: Graph BFS/DFS Hybrid Patterns
- Connected components
- Islands problems
- Grid-based traversal
- Using Python adjacency lists
Module 15: Interview Practice and Strategies
- Full practice problems
- How to express your thinking clearly
- Debugging strategies under time pressure
- Optimization tips and Python tricks