Visão Geral
Este curso ensina como filtrar, renomear e enriquecer métricas utilizando o Telegraf, garantindo padronização, redução de ruído e aumento do valor analítico dos dados coletados. O foco está na construção de pipelines de métricas limpos, consistentes e preparados para ambientes de produção.
Conteúdo Programatico
Module 1 – Metric Hygiene Fundamentals
- Why metric hygiene matters
- Noise vs signal in monitoring
- Long-term impact of poor metric quality
- Common metric hygiene problems
Module 2 – Filtering Metrics in Telegraf
- Tag and field filtering
- Measurement filtering
- Drop and keep strategies
- Preventing data overload
Module 3 – Renaming Metrics and Fields
- Renaming measurements
- Standardizing field names
- Regex-based renaming
- Naming conventions and patterns
Module 4 – Tag Management and Cleanup
- Adding and removing tags
- Tag normalization strategies
- Handling inconsistent tag values
- Avoiding tag misuse
Module 5 – Metric Enrichment Techniques
- Adding contextual metadata
- Environment, region and role tags
- Static vs dynamic enrichment
- Using external context sources
Module 6 – Advanced Processing with Processors
- Converter and enum processors
- Regex processor deep dive
- Starlark processor basics
- Complex transformation scenarios
Module 7 – Validation and Quality Assurance
- Validating processed metrics
- Detecting missing or malformed data
- Comparing raw vs processed metrics
- Observability of the pipeline
Module 8 – Real-World Metric Processing Use Cases
- Infrastructure metrics cleanup
- Application metric standardization
- Industrial and IoT metric enrichment
- Best practices and common mistakes