Visão Geral
Este Curso Elasticsearch Performance Tuning and Scaling, foi desenvolvido para profissionais que desejam otimizar o desempenho e escalar clusters Elasticsearch em ambientes corporativos e de grande volume de dados.
Durante o treinamento, os participantes aprenderão técnicas práticas para melhorar a performance de consultas, ingestão, indexação e armazenamento, além de estratégias para escalar clusters horizontal e verticalmente com alta disponibilidade.
O curso combina teoria e prática, fornecendo uma base sólida para implementar e manter ambientes Elasticsearch eficientes, estáveis e escaláveis.
Conteúdo Programatico
Module 1: Understanding Elasticsearch Performance Fundamentals
- How Elasticsearch handles data and queries
- Key components impacting performance (nodes, shards, segments)
- Common bottlenecks and performance indicators
- Understanding throughput vs. latency
Module 2: Index and Mapping Optimization
- Designing efficient index structures
- Field data types and their performance implications
- Mapping strategies for text, keyword, and numeric fields
- Index Lifecycle Management (ILM) for performance and storage optimization
- Managing segment merges and index refresh intervals
Module 3: Query and Search Performance Tuning
- Query optimization and best practices
- Using filters vs. queries for performance gains
- Reducing scoring overhead with constant_score queries
- Profiling queries using Explain and Profile APIs
- Pagination optimization: search_after and scroll APIs
Module 4: JVM and Heap Memory Optimization
- Understanding JVM architecture for Elasticsearch
- Configuring heap size and garbage collection (GC tuning)
- Off-heap memory and file system cache utilization
- Monitoring and troubleshooting memory-related issues
Module 5: Node and Cluster Configuration Tuning
- Node roles and cluster topology for performance
- Thread pool management and queue settings
- I/O optimization: storage types, SSD vs. HDD, and file system tuning
- Network configuration and transport layer optimization
- Adjusting refresh intervals and replica strategies
Module 6: Data Ingestion and Bulk Indexing Optimization
- Bulk indexing best practices
- Managing pipeline throughput with Logstash and Beats
- Using ingest nodes efficiently
- Throttling and controlling data ingestion rates
- Handling time-series data performance
Module 7: Scaling Elasticsearch Clusters
- Vertical vs. horizontal scaling strategies
- Adding and removing nodes safely
- Cluster sharding and rebalancing
- Designing clusters for high availability and scalability
- Scaling in cloud environments (AWS, Azure, Elastic Cloud)
Module 8: Monitoring and Benchmarking
- Using Cat APIs and Cluster Health APIs
- Monitoring performance with Kibana and Elastic Monitoring
- Benchmarking using Rally tool
- Setting alerts for performance anomalies
- Capacity planning and proactive scaling
Module 9: Troubleshooting and Real-World Scenarios
- Identifying slow queries and indexing operations
- Resolving cluster instability and high CPU/memory usage
- Handling shard allocation and unassigned shards
- Real-world tuning examples and case studies