Visão Geral
Curso Elasticsearch Engineer II Domine as habilidades de gerenciamento de um cluster, incluindo como configurar filtragem de fragmentos, reconhecimento de alocação de fragmentos e reconhecimento forçado. Por meio do treinamento Elasticsearch Engineer II, aprenda sobre como projetar para escala, escalar com réplicas, escalar com índices, casos de uso de planejamento de capacidade e trabalhar com dados baseados em tempo.
Objetivo
No final Curso Elasticsearch Engineer II, você também se aprofundará na modelagem de campo e documento, corrigindo dados com script indolor, pesquisa entre clusters, agregações de pipeline e muito mais.
Assuntos abordados
- Modelagem de campo
- Dados de correção
- Pesquisa Avançada e Agregações
- Gerenciamento de Cluster
- Planejamento de capacidade
- Internos do Elasticsearch
- Modelagem de documentos
- Monitoramento e Alerta
- Passando de Dev para Produção
Publico Alvo
- Profissionais experientes do Elasticsearch que precisam expandir seus conhecimentos sobre gerenciamento de cluster Elasticsearch e desenvolvimento de aplicativos.
Pre-Requisitos
- Conclua o curso Elasticsearch Engineer I ou possua conhecimento equivalente do Elasticsearch
Materiais
Inglês/Português/Lab Prático
Conteúdo Programatico
Field Modeling
- Learn how to design and model the fields in your documents, including discussions on granular fields, range types, dealing with large field cardinality, and designing for proximity matching.
- Hands-on Lab
Fixing Data
- Learn how to use the new Painless scripting language in Elasticsearch and discuss use cases for scripting, including the Reindex, Update By Query and Delete By Query APIs.
- Hands-on Lab
Document Modeling
- We discuss denormalizing documents, working with nested fields, and using the join field for parent/child relationships
- Hands-on Lab
Advanced Search and Aggregations
- Learn some of the advanced search and aggregation techniques, including cross cluster search and pipeline aggregations.
- Hands-on Lab
Cluster Management
- We walk through the details of managing a cluster, including how to configure shard filtering, shard allocation awareness and forced awareness.
- Hands-on Lab
Capacity Planning
- Learn about designing for scale, scaling with replicas, scaling with Indices, capacity planning use cases, and working with time-based data.
- Hands-on Lab
Elasticsearch Internals
- Take a deep dive into how Elasticsearch works, including the details of Apache Lucene, segments, doc values, and caching.
- Hands-on Lab
Monitoring and Alerting
- We discuss of monitoring options, including the Stats API, task monitoring, the cat API, the X-Pack Monitoring component, and guidelines for monitoring a cluster and setting up alerts.
- Hands-on Lab
From Dev to Production
- We explore items to consider when moving to production, including network setup, hardware requirements, JVM settings, and also a discussion on some of the common causes of poor query performance and how to fix them.
- Hands-on Lab
TENHO INTERESSE