Curso Elastic Logstash Kibana Full Stake ELK
24 horasVisão Geral
Curso Elastic Logstash Kibana Full Stake ELK. O Elasticsearch é um banco de dados NoSQL baseado no mecanismo de pesquisa Lucene. O Logstash é uma ferramenta de pipeline de log que aceita entradas de várias fontes, executa diferentes transformações e exporta os dados para diferentes destinos. Kibana é uma camada de visualização que funciona sobre o Elasticsearch. Esses três produtos de código aberto diferentes geralmente são usados na análise de logs em ambientes de TI.
A DevOpsSchool oferece o Programa de Treinamento ELK stack exclusivo para vários níveis de profissionais de TI. Temos especialistas/instrutores experientes em pilha ELK para conduzir aulas online e offline para ajudar os candidatos a obter o conjunto de habilidades e sua capacidade que pode ser utilizada por eles.
Objetivo
Após realizar este Curso Elastic Logstash Kibana Full Stake ELK, você será capaz de:
- Começando
- Arquitetura do Elasticsearch
- Instalando o Elasticsearch e o Kibana
- Gerenciando Documentos
- Mapeamento
- Análises e analisadores
- Introdução à pesquisa
- Consultas em nível de termo
- Consultas de texto completo
- Adicionando lógica booleana às consultas
Informações Gerais
- Carga horaria 24h
- Se noturno este curso e ministrado de segunda-feira a sexta-feira das 19h às 23h, total de 6 encontros,
- Se aos sábados este curso e ministrado das 09h às 18h, total de 8 encontros,
- In-company
Formato de Entrega:
- 100% on-line ao vivo via Microsoft Teams na presença de um instrutor/consultor
Materiais
Inglês + Exercícios + Lab PraticoConteúdo Programatico
Getting Started
- Introduction to this course
- Introduction to Elasticsearch
- Overview of the Elastic Stack (ELK+)
- Elastic Stack
Architecture of Elasticsearch
- Introduction to this section
- Nodes & Clusters
- Nodes & Clusters
- Indices & Documents
- A word on types
- Another word on types
- Sharding
- Sharding
- 4 questions
- Replication
- Replication
- 6 questions
- Keeping replicas synchronized
- Searching for data
- Distributing documents across shards
Installing Elasticsearch & Kibana
- Running Elasticsearch & Kibana in Elastic Cloud
- Installing Elasticsearch on Mac/Linux
- Using the MSI installer on Windows
- Installing Elasticsearch on Windows
- Configuring Elasticsearch
- Installing Kibana on Mac/Linux
- Installing Kibana on Windows
- Configuring Kibana
- Kibana now requires data to be available
- Introduction to Kibana and dev tools
Managing Documents
- Creating an index
- Adding documents
- Retrieving documents by ID
- Replacing documents
- Updating documents
- Scripted updates
- Upserts
- Deleting documents
- Deleting indices
- Batch processing
- Importing test data with cURL
- Exploring the cluster
Mapping
- Introduction to mapping
- Dynamic mapping
- Meta fields
- Field data types
- Adding mappings to existing indices
- Changing existing mappings
- Mapping parameters
- Adding multi-fields mappings
- Defining custom date formats
- Picking up new fields without dynamic mapping
Analysis & Analyzers
- Introduction to the analysis process
- A closer look at analyzers
- Using the Analyze API
- Understanding the inverted index
- Analyzers
- Overview of character filters
- Overview of tokenizers
- Overview of token filters
- Overview of built-in analyzers
- Configuring built-in analyzers and token filters
- Creating custom analyzers
- Using analyzers in mappings
- Adding analyzers to existing indices
- A word on stop words
Introduction to Searching
- Search methods
- Searching with the request URI
- Introducing the Query DSL
- Understanding query results
- Understanding relevance scores
- Debugging unexpected search results
- Query contexts
- Full text queries vs term level queries
- Basics of searching
Term Level Queries
- Introduction to term level queries
- Searching for a term
- Searching for multiple terms
- Retrieving documents based on IDs
- Matching documents with range values
- Working with relative dates (date math)
- Matching documents with non-null values
- Matching based on prefixes
- Searching with wildcards
- Searching with regular expressions
- Term Level Queries
Full Text Queries
- Introduction to full text queries
- Flexible matching with the match query
- Matching phrases
- Searching multiple fields
- Full Text Queries
Adding Boolean Logic to Queries
- Introduction to compound queries
- Querying with boolean logic
- Debugging bool queries with named queries
- How the “match” query works
Joining Queries
- Introduction to this section
- Querying nested objects
- Nested inner hits
- Mapping document relationships
- Adding documents
- Querying by parent ID
- Querying child documents by parent
- Querying parent by child documents
- Multi-level relations
- Parent/child inner hits
- Terms lookup mechanism
- Join limitations
- Join field performance considerations
Controlling Query Results
- Specifying the result format
- Source filtering
- Specifying the result size
- Specifying an offset
- Pagination
- Sorting results
- Sorting by multi-value fields
- Filters
Aggregations
- Introduction to aggregations
- Metric aggregations
- Introduction to bucket aggregations
- Document counts are approximate
- Nested aggregations
- Filtering out documents
- Defining bucket rules with filters
- Range aggregations
- Histograms
- Global aggregation
- Missing field values
- Aggregating nested objects
Improving Search Results
- Introduction to this section
- Proximity searches
- Affecting relevance scoring with proximity
- Fuzzy match query (handling typos)
- Fuzzy query
- Adding synonyms
- Adding synonyms from file
- Highlighting matches in fields
- Stemming
Building a Web Application Search Engine
- A quick note
- Introducing Application & Client Libraries
- Adding a simple query
- Paginating search results
- Adding fuzziness
- Aggregations & Filters
- Adding product details page