Visão Geral
Curso Deep Learning Roadmap. Este curso apresenta um roadmap completo e estruturado para formação em Deep Learning, cobrindo desde os fundamentos matemáticos e computacionais até arquiteturas avançadas e aplicações modernas em escala industrial. O foco está em orientar o aluno de forma progressiva, conectando teoria, prática e decisões arquiteturais, preparando-o para atuar profissionalmente em projetos de inteligência artificial, machine learning e deep learning em diferentes domínios.
Conteúdo Programatico
Module 1: Foundations of Artificial Intelligence
- History and evolution of artificial intelligence
- Machine learning vs deep learning
- Types of learning: supervised, unsupervised and reinforcement
- AI use cases and industry applications
Module 2: Mathematical Foundations
- Linear algebra for deep learning
- Probability and statistics essentials
- Calculus and gradients
- Optimization fundamentals
Module 3: Neural Networks Basics
- Perceptron and multilayer neural networks
- Activation functions
- Loss functions
- Backpropagation overview
Module 4: Deep Learning Architectures
- Fully connected networks
- Convolutional Neural Networks (CNNs)
- Recurrent Neural Networks (RNNs)
- Transformers architecture
Module 5: Training Deep Neural Networks
- Gradient descent and optimizers
- Regularization techniques
- Initialization strategies
- Hyperparameter tuning
Module 6: Frameworks and Tooling
- PyTorch fundamentals
- TensorFlow and Keras overview
- GPU and accelerator usage
- Experiment tracking and reproducibility
Module 7: Advanced Topics
- Transfer learning
- Self-supervised learning
- Foundation models
- Multimodal deep learning
Module 8: Production and Career Path
- Model deployment concepts
- MLOps for deep learning
- Monitoring and model drift
- Deep learning career roadmap