Visão Geral
O curso Deep Learning with TensorFlow and Keras oferece uma introdução prática e aprofundada às redes neurais e suas aplicações modernas. Os participantes aprenderão os fundamentos do aprendizado profundo, incluindo redes neurais convolucionais, recorrentes e profundas, e como implementá-las utilizando TensorFlow e Keras. O curso aborda desde os conceitos teóricos até o desenvolvimento e otimização de modelos reais, com foco em aplicações práticas em visão computacional e processamento de linguagem natural.
Conteúdo Programatico
Introduction to Deep Learning
- Understanding Neural Networks
- Supervised vs Unsupervised Learning
- Overview of Deep Learning Architectures
Getting Started with TensorFlow and Keras
- Installing and Configuring TensorFlow
- Keras API Overview
- Building and Compiling Models
Feedforward Neural Networks (ANNs)
- Layers, Activations, and Loss Functions
- Backpropagation and Optimization Algorithms
- Implementing Basic Neural Networks
Convolutional Neural Networks (CNNs)
- Convolution and Pooling Layers
- Building CNNs for Image Classification
- Transfer Learning with Pretrained Models
Recurrent Neural Networks (RNNs)
- Sequence Modeling Concepts
- LSTM and GRU Architectures
- Applications in Text and Time-Series Data
Model Training and Optimization
- Batch Normalization and Dropout
- Regularization Techniques
- Hyperparameter Tuning and Early Stopping
Evaluating and Deploying Deep Learning Models
- Model Evaluation Metrics
- Saving, Loading, and Serving Models
- Deployment with TensorFlow Serving and Flask
Advanced Topics and Best Practices
- Autoencoders and Generative Models
- Custom Layers and Loss Functions
- Model Interpretability and Explainability
Hands-on Project
- Building an End-to-End Deep Learning Application
- Model Deployment and Performance Monitoring