Visão Geral
Curso Data Quality Engineering. Este curso aprofunda práticas, técnicas e arquiteturas para garantir qualidade de dados em plataformas modernas. O foco está em engenharia de qualidade aplicada a pipelines, tabelas analíticas e produtos de dados, tratando qualidade como um requisito técnico contínuo e mensurável.
Conteúdo Programatico
Module 1: Data Quality Fundamentals
- What is data quality
- Why data quality fails
- Quality as an engineering problem
- Quality vs governance
Module 2: Data Quality Dimensions
- Accuracy
- Completeness
- Consistency
- Timeliness
Module 3: Data Validation Techniques
- Rule-based validation
- Schema validation
- Referential integrity
- Statistical checks
Module 4: Quality in Data Pipelines
- Ingestion validation
- Transformation checks
- Output validation
- Incremental quality
Module 5: Data Quality Monitoring
- Quality metrics
- Thresholds and alerts
- Anomaly detection
- Quality dashboards
Module 6: Data Quality Automation
- Quality as code
- CI/CD integration
- Automated remediation
- Backfill strategies
Module 7: Data Incidents and Resolution
- Detecting quality issues
- Root cause analysis
- Data incident response
- Preventive strategies
Module 8: Quality at Scale
- Multi-domain data quality
- Cost vs quality trade-offs
- Maturity models
- Production best practices