Visão Geral
Este curso aborda normalização de dados e definição de estratégias de tags utilizando o Telegraf, com foco em padronização, controle de cardinalidade e longevidade da arquitetura de métricas. O aluno aprenderá a transformar dados heterogêneos em métricas consistentes, fáceis de consultar e escaláveis.
Conteúdo Programatico
Module 1 – Data Normalization Fundamentals
- What is data normalization
- Why normalization matters in time-series
- Common normalization problems
- Long-term impact on architecture
Module 2 – Tags and Fields Deep Dive
- Difference between tags and fields
- Query performance implications
- Storage and index considerations
- When not to use tags
Module 3 – Designing a Tag Strategy
- Tag selection criteria
- High vs low cardinality tags
- Stable vs volatile attributes
- Naming conventions and standards
Module 4 – Normalizing Metrics with Telegraf
- Using processors for normalization
- Renaming measurements and fields
- Tag enrichment and cleanup
- Handling inconsistent input data
Module 5 – Cardinality Control Techniques
- Identifying cardinality explosions
- Filtering unnecessary dimensions
- Flattening metric structures
- Aggregation as a control strategy
Module 6 – Standardization Across Multiple Sources
- Normalizing heterogeneous inputs
- Cross-system metric consistency
- Multi-environment standardization
- Migration strategies
Module 7 – Validation and Governance
- Validating normalized data
- Metric catalogs and documentation
- Governance and ownership models
- Change management
Module 8 – Real-World Tag Strategy Use Cases
- Infrastructure and host metrics
- Application and service metrics
- Industrial and IoT scenarios
- Best practices and common mistakes