Visão Geral
O curso Data Analytics with IA foi desenvolvido para formar profissionais capazes de analisar, transformar e visualizar dados utilizando Excel, SQL, Python e Power BI — com o suporte de Inteligência Artificial para acelerar tarefas, criar códigos, detectar erros e automatizar processos analíticos.
Ao final, o aluno estará apto a realizar análises completas, construir dashboards, entregar projetos profissionais e se preparar para entrevistas técnicas.
Conteúdo Programatico
Introduction to Excel for Data Analysis
- Overview of Excel interface
- Navigating sheets efficiently
- Math & statistical functions (SUM, AVERAGE, COUNT)
- Logical functions (IF, AND, OR)
- Text functions for manipulation
- VLOOKUP, VLOOKUP
Advanced Formulas & Dashboards Using Excel
- INDEX MATCH
- SUMIF, COUNTIFS, nested functions
- Power Query: import, transform, merge, append
- Dynamic dashboards
- Pivot tables from multiple sources
- Slicers, combo charts, layout optimization
Excel AI, Project, Kaggle & Github Introduction
- AI-assisted data cleaning & transformation
- Excel with AI project
- Kaggle and Github optimization
Introduction to SQL
- Overview of SQL & databases
- Basic syntax, SELECT, WHERE
- Creating & modifying tables (CREATE/ALTER)
- Understanding constraints
Aggregations & GROUP BY
- COUNT, SUM, AVG, MIN, MAX
- Filtering aggregates
- GROUP BY, HAVING
- ORDER BY, LIMIT, sorting
- DISTINCT vs GROUP BY
- LLM-powered optimization suggestions
Joins & Subqueries
- Introduction to Joins
- INNER, LEFT, RIGHT, FULL OUTER Joins & Self join
- Deep Dive into Joins & Subquery Logic
- Subqueries
Window Functions
- Basic windows functions Aggregate functions
- Rank functions( ROW_NUMBER(), RANK(), DENSE_RANK() ,PARTITION BY)
- Advance windows functions (LAG(), LEAD(), SUM() OVER(), AVG() OVER())
- AI error detection in analytical SQL
Data Cleaning & Recursive CTE’s
- CTE ,SUBSTRING, LENGTH, TRIM, REPLACE
- UPPER/LOWER
- DATE_ADD, DATEDIFF, EXTRACT
- AI-assisted SQL debugging
CASE WHEN, Optimization & Analytics
- CASE WHEN & conditional logic
- IF statements
- Indexes, EXPLAIN plans
- Funnel analysis, cohorts, retention
Python Fundamentals for Data Analysis
- Introduction to python & installation
- Python basics, data types, variables
- Loops (for, while)
- Conditional statements (if, elif, else)
Python Fundamentals (Continued)
- Lists, dictionaries, tuples
- List comprehension ,operators
- String methods,Indexing & slicing
- Functions & error handling
Python Fundamentals (Continued)
- Functions such as map,filter , lambda
- Inbuilt functions len(), type(), sum(), sorted()
- Working with external files
- Using Colab AI for debugging and code generation
Pandas Data Cleaning
- Data cleaning operations
- String processing
- DataFrames & Series
- Missing values
- Duplicate handling
Pandas Transformation
- Data type conversions
- Column renaming
- Groupby, agg, apply
- Pivot tables
- Merging & joining
- AI helpers for transformation scripts
NumPy & EDA
- NumPy arrays and vectorization
- Statistical operations
- Outlier handling
- EDA workflow
Visualization with Matplotlib, Seaborn & Plotly
- Basic & advanced charts
- Interactive visualizations
- Customization & styling
- AI-generated chart scripts
EDA Project (Python)
- Data loading
- Cleaning with Pandas
- Visualizations
Python + AI EDA Project
- Data acquisition
- Cleaning & preparation
- Numerical analysis
- Visualization
- AI-assisted EDA automation
Data Analysis with LLMs
- How LLMs help in analysis
- Pandas code generation
- Cleaning assistance
- Visualization generation
Power BI Fundamentals & Data Modeling
- Power BI interface
- Importing data
- Relationships & schemas
- Modeling best practices
DAX & KPIs
- SUM, AVERAGE, COUNT, CALCULATE
- SWITCH, FILTER
- Time intelligence
- Running totals & growth
Dashboard Design & ETL
- Power Query for ETL
- Visualization types
- Interactive elements
- Dashboard best practices
Interview Preparation
- Resume building
- LinkedIn optimization
- Positioning your background
- Identify target companies and roles
Presentation & Mock Interviews
- STAR method
- Project storytelling
- Mock interviews
- Common SQL interview patterns
- Python coding (data manipulation, EDA) Interview Questions