Curso Customer Experiences with Contact Center AI Dialogflow ES

  • RPA | IA | AGI | ASI | ANI | IoT | PYTHON | DEEP LEARNING

Curso Customer Experiences with Contact Center AI Dialogflow ES

24 horas
Visão Geral

Neste Curso Customer Experiences with Contact Center AI Dialogflow ES, você aprenderá a projetar conversas com clientes usando Inteligência Artificial de Contact Center (CCAI). Você usará o Dialogflow ES para criar agentes virtuais e testá-los usando o simulador. Aprenda a adicionar funcionalidades para acessar dados de sistemas externos, tornando os agentes virtuais conversacionalmente dinâmicos. Você conhecerá métodos de teste, protocolos de conectividade, APIs, gerenciamento de ambiente e medidas de conformidade. Aprenda as práticas recomendadas para integrar soluções de conversação com seu software de contact center existente e implementar soluções de forma segura e em escala.

Objetivo

Este Curso Customer Experiences with Contact Center AI Dialogflow ES ensina aos participantes as seguintes habilidades:

  • Defina Google CCAI.
  • Explique como o Dialogflow pode ser usado em aplicativos do Contact Center.
  • Implemente um agente virtual usando o Dialogflow ES.
  • Leia e grave dados do Firestore usando Cloud Functions.
  • Use as ferramentas do Dialogflow e o registro em nuvem para solucionar problemas.
  • Descrever como gerenciar ambientes de agentes virtuais.
  • Identifique as melhores práticas gerais para agentes virtuais.
  • Identifique aspectos-chave como segurança e conformidade no
  • contexto de contact centers.
  • Analise gravações de áudio usando o Speech Analytics
  • Framework (SAF).
  • Reconheça casos de uso em que o Agent Assist agrega valor.
Publico Alvo

Este é um curso do iniciante ao intermediário, destinado a alunos com os seguintes tipos de funções:

  • Designers conversacionais: projetam a experiência do usuário de um assistente virtual. Traduz os requisitos de negócios da marca em fluxos naturais de diálogo.
  • Desenvolvedores cidadãos: Criam novos aplicativos de negócios para consumo de terceiros usando desenvolvimento de alto nível e ambientes de tempo de execução.
  • Desenvolvedores de software: codificam software de computador em uma linguagem de programação (por exemplo, C++, Python, JavaScript) e geralmente usando um SDK/API.
  • Especialistas em operações: monitoram as operações do sistema e solucionam problemas. Instala, oferece suporte e mantém ferramentas de rede e sistema.
Pre-Requisitos
  • Google Cloud Fundamentals ou tem experiência equivalente
Materiais
Inglês/Português/Lab Prático
Conteúdo Programatico

Overview of Contact Center AI

  1. Define what Contact Center AI (CCAI) is and what it can do for contact centers
  2. Identify each component of the CCAI Architecture: Speech Recognition, Dialogflow, Speech Synthesis, Agent Assist, and Insights AI
  3. Describe the role each component plays in a CCAI solution

Conversational Experiences

  1. List the basic principles of a conversational experience
  2. Explain the role of Conversation virtual agents in a conversation experience
  3. Articulate how STT (Speech to Text) can determine the quality of a
    conversation experience
  4. Demonstrate and test how Speech adaptation can improve the speech recognition accuracy of the agent
  5. Recognize the different NLU (Natural Language Understanding) and NLP (Natural Language Processing) techniques and the role they play on conversation experiences
  6. Explain the different elements of a conversation (intents, entities, etc.)
  7. Use sentiment analysis to help with the achievement of a higher-quality conversation experience
  8. Improve conversation experiences by choosing different TTS voices (Wavenet vs. Standard)
  9. Modify the speed and pitch of a synthesized voice
  10. Describe how to leverage SSML to modify the tone and emphasis of a synthesized passage

Fundamentals of Designing Conversations

  1. Identify user roles and their journeys
  2. Write personas for virtual agents and users
  3. Model user-agent interactions

Dialogflow Product Options

  1. Describe two primary differences between Dialogflow Essentials (ES) and Dialogflow Customer Experience (CX)
  2. Identify two design principles for your virtual agent which apply regardless of whether you implement in Dialogflow ES or CX
  3. Identify two ways your virtual agent implementation changes based on whether you implement in Dialogflow ES or CX
  4. List the basic elements of the Dialogflow user interface

Course Review

  1. Review what was covered in the course as relates to the objectives

Fundamentals of Building Conversations with Dialogflow ES

  1. List the basic elements of the Dialogflow CX User Interface
  2. Build a virtual agent to handle identified user journeys
  3. Train the NLU model through the Dialogflow console
  4. Define and test intents for a basic agent
  5. Train the agent to handle expected and unexpected user scenarios
  6. Recognize the different types of entities and when to use them
  7. Create entities
  8. Define and test entities on a basic agent
  9. Implement slot filling using the Dialogflow UI
  10. Describe when Mega Agent might be used
  11. Demonstrate how to add access to a knowledge base for your virtual agent to answer customer questions straight from a company FAQ

Maintaining Context in a Conversation

  1. Create follow-up intents
  2. Recognize the scenarios in which context should be used
  3. Identify the possible statuses of a context (active versus inactive context)
  4. Implement dialogs using input and output contexts

Moving From Chat to Voice Virtual Agent

  1. Describe two ways that the media type changes the conversation
  2. Configure the telephony gateway for testing
  3. Test a basic voice agent
  4. Modify the voice of the agent
  5. Show how the different media types can have different responses
  6. Consider the modifications needed when moving to production
  7. Be aware of the telephony integration for voice in a production environment

Course Review

  1. Review what was covered in the course as relates to the objectives

Testing and Logging

  1. Use Dialogflow tools for troubleshooting
  2. Use Google Cloud tools for debugging your virtual agent
  3. Review logs generated by virtual agent activity
  4. Recognize ways an audit can be performed

Taking Actions with Fulfillment

  1. Characterize the role of fulfillment with respect to Contact Center AI
  2. Implement a virtual agent using Dialogflow ES
  3. Use Cloud Firestore to store customer data
  4. Implement fulfillment using Cloud Functions to read and write Firestore data
  5. Describe the use of Apigee for application deployment

Integrating Virtual Agents

  1. Describe how to use the Dialogflow API to programmatically create and modify the virtual agent
  2. Describe connectivity protocols: gRPC, REST, SIP endpoints, and phone numbers over PSTN
  3. Describe how to replace existing head intent detection on IVRs with Dialogflow intents
  4. Describe virtual agent integration with Google Assistant
  5. Describe virtual agent integration with messaging platforms
  6. Describe virtual agent integration with CRM platforms (such as Salesforce and Zendesk)
  7. Describe virtual agent integration with enterprise communication platforms (such as Genesys, Avaya, Cisco, and Twilio)
  8. Explain the ability that telephony providers have of identifying the caller and how that can modify the agent design
  9. Describe how to incorporate IVR features in the virtual agent

Course Review

  1. Review what was covered in the course as relates to the objectives

Environment Management

  1. Create Draft and Published versions of your virtual agent
  2. Create environments where your virtual agent will be published
  3. Load a saved version of your virtual agent to Draft
  4. Change which version is loaded to an environment

Drawing Insights from Recordings with SAF

  1. Analyze audio recordings using the Speech Analytics Framework (SAF)

Intelligence Assistance for Live Agents

  1. Recognize use cases where Agent Assist adds value
  2. Identify, collect, and curate documents for knowledge base construction
  3. Describe how to set up knowledge bases
  4. Describe how FAQ Assist works
  5. Describe how Document Assist works
  6. Describe how the Agent Assist UI works
  7. Describe how Dialogflow Assist works
  8. Describe how Smart Reply works
  9. Describe how Real-time entity extraction works

Compliance and Security

  1. Describe two ways security can be implemented on a CCAI integration
  2. Identify current compliance measures and scenarios where compliance is needed

Best Practices

  1. Convert pattern matching and decision trees to smart conversational design
  2. Recognize situations that require escalation to a human agent
  3. Support multiple platforms, devices, languages, and dialects
  4. Use Diagflow’s built-in analytics to assess the health of the virtual agent
  5. Perform agent validation through the Dialogflow UI
  6. Monitor conversations and Agent Assist
  7. Institute a DevOps and version control framework for agent development and maintenance
  8. Consider enabling spell correction to increase the virtual agent’s accuracy

Implementation Methodology

  1. Identify the stages of the Google Enterprise Sales Process
  2. Describe the Partner role in the Enterprise Sales Process
  3. Detail the steps in a Contact Center AI project using Google’s ESP
  4. Describe the key activities of the Implementation Phase in ESP
  5. Locate and understand how to use Google’s support assets for Partners
TENHO INTERESSE

Cursos Relacionados

Curso AI ML Toolkits with Kubeflow Foundation

24 horas

Curso Container Management with Docker

24 Horas

Curso Machine Learning Python & R In Data Science

32 Horas

Curso Docker for Developers and System Administrators

16 horas

Curso artificial inteligence AI for Everyone Foundation

16 horas

Curso IA Inteligência Artificial e Código Aberto Foundation

16 horas

Curso Artificial Intelligence with Azure

24 Horas

Curso RPA Robotic Process Automation Industria 4.0

32 horas