Visão Geral
Este curso ensina, na prática, como criar agentes inteligentes, assistentes personalizados e automações completas usando modelos GPT modernos. A ideia é unir estrutura tradicional de desenvolvimento com criatividade e ferramentas atuais, permitindo que você construa soluções realmente úteis para empresas, produtos digitais e rotinas de trabalho.
Conteúdo Programatico
Module 1 — Foundations of AI Assistants and Agents
- Difference between chatbots, assistants and agents
- Components of an intelligent system
- Capabilities of GPT models in automation
Module 2 — Prompt Engineering for Agents
- Structure of system prompts
- Role definition and behavioral consistency
- Task decomposition and step-based reasoning
Module 3 — Building Your First Assistant
- Chat architecture overview
- Context handling
- Deterministic and hybrid-response strategies
Module 4 — Function Calling Essentials
- Defining tools
- Creating schemas
- Step-by-step execution flows
- Real-world use cases
Module 5 — Multi-Agent Systems
- When and why to use multiple agents
- Agent collaboration strategies
- Supervisors, planners and specialist agents
- Practical coordination patterns
Module 6 — Memory Systems
- Short-term vs. long-term memory
- Vector-based memory
- Conversation state and retrieval strategies
- Best practices and pitfalls
Module 7 — RAG (Retrieval-Augmented Generation)
- Document ingestion
- Vector store creation
- Retrieval workflows
- Evaluation and optimization
Module 8 — Vision, Audio and Multimodality
- Using images as inputs
- Extracting structured data from screenshots
- Speech-to-text and text-to-speech with agents
- Image generation inside workflows
Module 9 — Automating Workflows
- Task scheduling
- Multi-step automations
- Integrating external services and APIs
- Business process automation
Module 10 — Building Complete Agent Applications
- Web, CLI and backend integration patterns
- State management
- Error handling and retry logic
- Logging and monitoring
Module 11 — Scaling, Safety and Deployments
- Rate limits and performance optimization
- Safe output constraints
- Privacy and data governance
- Deploying agents to production
Module 12 — Final Project: Intelligent Automation System
Create a complete agent solution, such as:
- Customer support assistant
- AI task automation bot
- Multi-agent productivity suite
- RAG-powered knowledge assistant
- Business workflow orchestrator
Includes:
- Planning
- Development
- Testing
- Deployment