Curso Cognitive Solutions and RPA Analytics

  • RPA | IA | AGI | ASI | ANI | IoT | PYTHON | DEEP LEARNING

Curso Cognitive Solutions and RPA Analytics

24 horas
Visão Geral

O Curso Cognitive Solutions and RPA Analytics oferece uma abordagem abrangente sobre como integrar tecnologias cognitivas e análise de dados com a Automação Robótica de Processos (RPA) para otimizar os processos de negócios. Os participantes aprenderão a aplicar técnicas avançadas de análise e aproveitar soluções cognitivas para aprimorar os fluxos de trabalho de RPA.

Objetivo

Após a conclusão deste Curso Cognitive Solutions and RPA Analytics, você será capaz de:

  1. Compreender os conceitos de soluções cognitivas e sua integração com RPA.
  2. Aplicar tecnologias cognitivas, como processamento de linguagem natural e aprendizado de máquina, para aprimorar os fluxos de trabalho de RPA.
  3. Utilizar técnicas de análise de dados para obter insights sobre o desempenho do RPA e otimizar processos.
  4. Desenvolver e implementar soluções cognitivas adaptadas às necessidades específicas do negócio.
  5. Avaliar o impacto das soluções cognitivas e da análise no desempenho e eficiência do RPA.
  6. Integrar soluções cognitivas e análise em projetos de RPA para alcançar objetivos de negócios.
Publico Alvo
  • Profissionais de automação, analistas de negócios e arquitetos de soluções interessados em incorporar tecnologias cognitivas e análise de dados em iniciativas de RPA.
  • Analistas de dados e cientistas de dados que buscam aplicar técnicas de análise aos dados de RPA para otimização de processos.
  • Líderes empresariais e tomadores de decisão envolvidos em projetos de RPA que desejam maximizar os benefícios das soluções cognitivas e da análise.
Conteúdo Programatico

Introduction to Cognitive Solutions and RPA Analytics

  1. Overview of cognitive technologies and analytics in the context of RPA.
  2. Understanding the evolution of RPA and its integration with cognitive solutions.
  3. Exploring real-world use cases where cognitive solutions and analytics enhance RPA effectiveness.
  4. Discussing the benefits and challenges of incorporating cognitive technologies into RPA workflows.

Cognitive Technologies for RPA Enhancement

  1. Utilizing natural language processing (NLP) to extract insights from unstructured data.
    1. Introduction to NLP techniques such as tokenization, stemming, and entity recognition.
    2. Practical applications of NLP in RPA, including sentiment analysis and text summarization.
  2. Implementing machine learning algorithms to automate decision-making in RPA workflows.
    1. Overview of supervised and unsupervised learning algorithms.
    2. Training machine learning models to classify data and make predictions for RPA tasks.
  3. Leveraging computer vision for image recognition and processing in RPA.
    1. Introduction to image processing techniques such as edge detection and feature extraction.
    2. Applying computer vision algorithms to automate document processing and visual inspection tasks in RPA.

Analytics Techniques for RPA Optimization

  1. Descriptive analytics for understanding RPA performance and identifying bottlenecks.
    1. Exploring key performance indicators (KPIs) for evaluating RPA processes.
    2. Utilizing descriptive statistics and data visualization techniques to analyze RPA performance metrics.
  2. Predictive analytics for forecasting RPA outcomes and optimizing resource allocation.
    1. Introduction to time series analysis and forecasting methods.
    2. Building predictive models to anticipate RPA workload fluctuations and resource requirements.
  3. Prescriptive analytics for recommending optimal actions to improve RPA efficiency.
    1. Using optimization algorithms and decision support systems to enhance RPA decision-making processes.

Developing Cognitive Solutions for RPA

  1. Designing and developing cognitive models tailored to specific RPA use cases.
    1. Identifying key requirements and constraints for cognitive solutions in RPA.
    2. Designing cognitive workflows and data pipelines to support RPA integration.
  2. Integrating cognitive solutions with RPA platforms to automate complex tasks.
    1. Leveraging APIs and web services to connect cognitive services with RPA bots.
    2. Implementing event-driven architectures to enable real-time interaction between cognitive and RPA systems.

Evaluating the Impact of Cognitive Solutions and Analytics

  1. Assessing the effectiveness of cognitive solutions in enhancing RPA workflows.
    1. Developing key performance indicators (KPIs) to measure the impact of cognitive automation.
    2. Conducting A/B testing and controlled experiments to evaluate the performance of cognitive-enhanced RPA processes.
  2. Measuring the ROI of incorporating analytics into RPA projects.
    1. Calculating the cost savings and productivity gains achieved through cognitive automation and analytics.
    2. Performing cost-benefit analyses to justify investments in cognitive RPA initiatives.

Integration of Cognitive Solutions and Analytics into RPA Projects

  1. Strategies for seamless integration of cognitive solutions and analytics into existing RPA initiatives.
    1. Establishing governance frameworks and best practices for managing cognitive RPA projects.
    2. Collaborating with cross-functional teams to ensure alignment between cognitive automation and business objectives.
  2. Best practices for managing cognitive-enhanced RPA projects and ensuring long-term success.
    1. Establishing change management processes to facilitate adoption of cognitive technologies within the organization.
    2. Implementing continuous improvement initiatives to iteratively enhance cognitive RPA capabilities and deliver value to stakeholders.
TENHO INTERESSE

Cursos Relacionados

Curso AI ML Toolkits with Kubeflow Foundation

24 horas

Curso Container Management with Docker

24 Horas

Curso Machine Learning Python & R In Data Science

32 Horas

Curso Docker for Developers and System Administrators

16 horas

Curso artificial inteligence AI for Everyone Foundation

16 horas

Curso IA Inteligência Artificial e Código Aberto Foundation

16 horas

Curso Artificial Intelligence with Azure

24 Horas

Curso RPA Robotic Process Automation Industria 4.0

32 horas