Visão Geral
O curso BigQuery Escalabilidade para Dados apresenta os fundamentos e práticas avançadas da plataforma Google BigQuery, demonstrando como ela permite processar grandes volumes de dados de maneira altamente escalável e eficiente. O participante aprenderá a projetar pipelines de dados, otimizar consultas SQL, integrar BigQuery com outras ferramentas do ecossistema Google Cloud e implementar soluções analíticas em larga escala com alta performance e baixo custo operacional.
Conteúdo Programatico
Module 1: Introduction to Google BigQuery
- Overview of BigQuery and its serverless architecture
- Key features and use cases
- BigQuery ecosystem and integration with Google Cloud services
- Understanding the pricing model and storage options
Module 2: BigQuery Data Structures and Management
- Datasets, tables, and schemas
- Partitioning and clustering for performance
- Loading and exporting data (CSV, JSON, Avro, Parquet, ORC)
- Managing access control and permissions
Module 3: Querying and Performance Optimization
- Writing standard SQL queries in BigQuery
- Query execution plans and optimization techniques
- Materialized views and caching strategies
- Using temporary and external tables
Module 4: Data Ingestion and ETL Pipelines
- Integrating BigQuery with Cloud Storage, Pub/Sub, and Dataflow
- Streaming data ingestion and batch loading
- Building ETL workflows with Dataform and Composer
- Handling real-time analytics
Module 5: Analytics and Machine Learning in BigQuery
- BigQuery ML: training and evaluating models with SQL
- Building regression, classification, and forecasting models
- Using BigQuery for predictive analytics and anomaly detection
- Visualization with Looker Studio and Data Studio
Module 6: Monitoring, Cost Management, and Security
- Query performance monitoring and logging
- Cost estimation and optimization strategies
- Data encryption and audit logging
- Identity and Access Management (IAM) best practices
Module 7: Advanced Scenarios and Best Practices
- Managing multi-region datasets and replication
- Federated queries (Cloud SQL, Sheets, and external sources)
- Using APIs and client libraries for automation
- Real-world architectures and scalability case studies