Visão Geral
Curso Backpropagation for Deep Neural Networks. Este curso aprofunda o estudo do algoritmo de Backpropagation aplicado a redes neurais profundas (Deep Neural Networks), abordando os desafios matemáticos, computacionais e de otimização que surgem com o aumento da profundidade dos modelos. O curso explora técnicas modernas para estabilização do treinamento, melhoria da convergência e eficiência computacional, conectando o backpropagation clássico às práticas atuais de Deep Learning utilizadas em produção.
Conteúdo Programatico
Module 1: Deep Neural Network Architectures
- Shallow vs deep neural networks
- Fully connected deep architectures
- Depth, width and representational power
- Computational graphs in deep models
Module 2: Backpropagation in Deep Networks
- Generalized chain rule
- Gradient flow across multiple layers
- Jacobians and matrix backpropagation
- Efficient gradient computation
Module 3: Activation Functions and Gradient Behavior
- Sigmoid and tanh limitations
- ReLU and variants
- Gradient saturation and sparsity
- Activation choice impact on training
Module 4: Vanishing and Exploding Gradients
- Mathematical explanation of gradient decay
- Deep network instability
- Exploding gradients and numerical issues
- Gradient clipping techniques
Module 5: Weight Initialization Strategies
- Random initialization pitfalls
- Xavier initialization
- He initialization
- Initialization effects on convergence
Module 6: Normalization Techniques
- Internal covariate shift
- Batch Normalization
- Layer Normalization
- Impact on gradient propagation
Module 7: Regularization and Generalization
- L1 and L2 regularization
- Dropout and stochastic regularization
- Early stopping
- Bias-variance tradeoff in deep models
Module 8: Optimization Enhancements
- Momentum-based gradient descent
- RMSProp
- Adam optimizer
- Learning rate scheduling
Module 9: Practical Implementation
- Implementing deep backpropagation from scratch
- Debugging gradient issues
- Monitoring loss and gradients
- Training deep models efficiently