Visão Geral
Curso Backpropagation em Redes Neurais Simples. Este curso apresenta o algoritmo de Backpropagation aplicado a redes neurais artificiais simples, com foco na compreensão matemática, algorítmica e computacional do processo de aprendizado supervisionado. O conteúdo aborda desde os fundamentos de redes neurais feedforward até o cálculo de gradientes e atualização de pesos, permitindo ao aluno compreender como modelos neurais aprendem a partir dos dados e como o erro é propagado para ajuste dos parâmetros.
Conteúdo Programatico
Module 1: Introduction to Neural Networks
- Artificial neurons and biological inspiration
- Perceptron model
- Feedforward neural networks
- Input, hidden and output layers
Module 2: Mathematical Foundations
- Vectors, matrices and matrix multiplication
- Activation functions and their derivatives
- Linear and non-linear transformations
Module 3: Loss Functions and Optimization
- Supervised learning overview
- Mean Squared Error and Cross-Entropy
- Cost function behavior
- Optimization problem formulation
Module 4: Gradient Descent Fundamentals
- Optimization intuition
- Partial derivatives
- Learning rate and convergence
- Batch and stochastic gradient descent
Module 5: Backpropagation Algorithm
- Chain rule in neural networks
- Error propagation from output to hidden layers
- Gradient computation for weights and biases
- Weight update equations
Module 6: Implementing Backpropagation from Scratch
- Forward pass implementation
- Loss computation
- Backward pass implementation
- Training loop design
Module 7: Practical Considerations
- Weight initialization strategies
- Vanishing and exploding gradients
- Model evaluation metrics
- Simple case studies