Visão Geral
O curso AWS Data Processing and Analysis apresenta as principais ferramentas e serviços da AWS voltados para o processamento, transformação e análise de dados. Durante o treinamento, os participantes aprenderão a projetar pipelines de dados, usar serviços como AWS Glue, AWS Lambda, Amazon Kinesis e Amazon Athena, e implementar soluções escaláveis de análise com base em boas práticas da AWS.
Conteúdo Programatico
Module 1: Introduction to AWS Data Analytics
- Overview of AWS Data Analytics ecosystem
- Key concepts: ETL, Data Lakes, and Data Warehousing
- Understanding data processing and analysis workflows
Module 2: Data Ingestion and Storage
- Amazon S3 for data storage and organization
- Ingesting data from multiple sources
- Managing data formats (CSV, JSON, Parquet, ORC)
Module 3: Data Processing with AWS Glue
- Introduction to AWS Glue components
- Building and running ETL jobs
- Data Catalog, Crawlers, and Job Triggers
- Integration with Amazon S3 and Redshift
Module 4: Stream Processing with Amazon Kinesis
- Overview of Kinesis Data Streams and Kinesis Data Firehose
- Real-time data ingestion and transformation
- Use cases for streaming analytics
Module 5: Serverless Data Processing
- Using AWS Lambda for event-driven processing
- Integrating Lambda with S3, DynamoDB, and Kinesis
- Error handling and retries in serverless architectures
Module 6: Data Analysis with Amazon Athena
- Querying data directly in Amazon S3 using SQL
- Optimizing queries and partitions
- Integrating Athena with Glue Data Catalog
Module 7: Data Warehousing with Amazon Redshift
- Overview of Redshift architecture
- Loading and querying data efficiently
- Redshift Spectrum and data lake integration
Module 8: Visualization and Reporting
- Integrating AWS services with Amazon QuickSight
- Creating dashboards and interactive reports
- Sharing insights securely within organizations
Module 9: Security, Monitoring, and Best Practices
- Data encryption and IAM permissions
- Monitoring with AWS CloudWatch and CloudTrail
- Cost optimization and performance tuning