Visão Geral
O curso AWS Data Collection and Storage aborda os principais serviços e práticas da Amazon Web Services (AWS) voltados para a coleta, ingestão e armazenamento de dados em escala. O participante aprenderá a projetar pipelines de ingestão de dados em tempo real e em lote, escolher o serviço de armazenamento ideal (S3, DynamoDB, Redshift, etc.) e aplicar boas práticas de segurança, desempenho e governança de dados.
Conteúdo Programatico
Module 1: Introduction to AWS Data Services
- Overview of AWS data ecosystem
- Key concepts in data ingestion and storage
- Batch vs. streaming data collection
Module 2: Data Ingestion Fundamentals
- Ingesting structured and unstructured data
- Working with APIs, logs, and IoT data sources
- Using AWS SDKs and CLI for data ingestion
Module 3: Real-Time Data Collection
- Introduction to Amazon Kinesis Data Streams and Firehose
- Building streaming ingestion pipelines
- Integrating Kinesis with Lambda and S3
Module 4: Batch Data Collection
- Using AWS Data Pipeline and AWS Glue for batch ingestion
- Scheduling and automating data collection jobs
- ETL workflows for batch processing
Module 5: Storage Services Overview
- Object storage with Amazon S3
- Relational storage with Amazon RDS
- NoSQL storage with Amazon DynamoDB
- Data warehousing with Amazon Redshift
Module 6: Data Organization and Management
- Designing efficient data lake structures
- Managing metadata with AWS Glue Data Catalog
- Data partitioning and lifecycle management
Module 7: Security and Compliance
- IAM roles and permissions for data access
- Encryption at rest and in transit
- Data governance and compliance best practices
Module 8: Monitoring and Optimization
- Monitoring ingestion and storage with CloudWatch
- Managing costs and optimizing data storage tiers
- Troubleshooting and performance tuning
Module 9: Case Studies and Best Practices
- Common architectures for data collection and storage
- Real-world examples and reference designs
- Best practices for scalable and secure data pipelines